Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    New Breakthrough in USV Warfare Mode in the Russo-Ukrainian Conflict
    HU Zhihuan, XIE Wei, LIU Ruonan, ZHANG Weidong
    Ocean Engineering Equipment and Technology    2024, 11 (1): 18-22.   DOI: 10.12087/oeet.2095-7297.2024.01.03
    Abstract1030)      PDF(pc) (698KB)(2051)       Save
    In recent years, with the rapid development of technology, the application of USV technology in the military field has gradually become one of the focuses of international military competition. In the Russo Ukrainian War, the USV maritime combat mode has shown new breakthroughs, providing new ideas and possibilities for future maritime operations. This article explores the application value, technical characteristics, and future development trends of unmanned vessels in maritime operations during the Russo Ukrainian War through practical case analysis. The aim is to provide reference and inspiration for research and practice in related fields.

    Related Articles | Metrics | Comments0
    Development of Mooring Connectors and its Application in Floating Offshore Wind Turbine
    DONG Xin, XU Qun, SHAO Yunliang
    Ocean Engineering Equipment and Technology    2024, 11 (1): 130-138.   DOI: 10.12087/oeet.2095-7297.2024.01.20
    Abstract976)      PDF(pc) (4193KB)(1275)       Save
    As a key part of position mooring system, connectors have been widely used for the joining of mooring lines with floating structures or different mooring components. Recently, with the development of floating offshore wind, multiple demonstration projects have been reported worldwide and large scale projects are under planning. The cost must be controlled for the floating wind to realize commercialization by technological innovation, including the mooring system. The mooring connectors have been utilized and verified in the offshore industry for the last several decades and played an important role in connection, installation, maintenance and replacement of mooring system. With the development and flexible application of the mooring connectors, the design, fabrication and installation of floating wind turbine could be significantly improved and the cost of floating wind will be effectively reduced. 
    Related Articles | Metrics | Comments0
    Techno-economic Evaluation of Hydrogen Production through Offshore Wind Farms
    LIU Chao, LI Ouping, CHENG Guangyuan, SHEN Qi, YU Xichong
    Ocean Engineering Equipment and Technology    2024, 11 (1): 116-121.   DOI: 10.12087/oeet.2095-7297.2024.01.18
    Abstract876)      PDF(pc) (823KB)(154)       Save
    Offshore wind resources in deep-water is more abundant and will be one of the main development trends in the next few years. However, offshore wind development faces many challenges such as the power transmission and consumption. It needs new development models and technological innovations to be promoted. Hydrogen production through offshore wind would improve the power system flexibility and safety, and could be used as renewable energy storage to achieve large-scale and long-term storage. Based on the market price and literature, the tech-economic comparison and evaluation are carried of onshore off-grid hydrogen production and offshore hydrogen production with pipeline from the levelized cost of hydrogen and internal rate of return. Based on the whole life cost, the levelized cost of hydrogen production through offshore with pipeline is lower and the CAPEX and OPEX of water electrolysis system have a significant impact on the LCOH. In terms of economy, offshore wind will obtain higher returns than offshore hydrogen production if all electricity could be imported to the power system.
    Related Articles | Metrics | Comments0
    Adaptability Analysis of Offshore New Energy Storage Technology Under Dual-carbon Background
    SHEN Qi, LI Ouping, LIU Chao, CHENG Guangyuan, YU Xichong
    Ocean Engineering Equipment and Technology    2024, 11 (1): 106-115.   DOI: 10.12087/oeet.2095-7297.2024.01.17
    Abstract860)      PDF(pc) (1237KB)(945)       Save
    This paper sorts out relevant engineering cases at home and abroad, analyzes the advantages and disadvantages of physical energy storage and electrochemical energy storage in offshore applications based on three scenarios: the mandatory requirement of energy storage systems policy for large-scale offshore wind farms, energy storage for improving the penetration of offshore wind power into the grid for integrated development of offshore oil and gas and new energy, and energy storage for off-grid production of green hydrogen, green ammonia, and green methanol. Considering the technology maturity, safety, reliability, compactness, lightweight, economy, and other factors, the most suitable energy storage applied offshorely is still the LFP battery. In the future, considering the superiority of lithium titanate oxide (LTO) batteries in terms of safety, after the cost is reduced, the choice of LTO battery could be considered. But due to the low density of LTO battery, the volume and quality of the equipment are larger than that of LFP battery, and the layout of the offshore platform needs to be further considered. In addition, because there is no single energy storage system that can simultaneously have the characteristics of high power, large energy storage density, reliable safety, and long life cycle, the use of “flywheel+” and “supercapacitor+”hybrid energy storage system is considered, to maximize the shortcomings of a single energy storage method to make up for, to obtain a better performance of the energy storage system. In order to ensure the safety and reliability of new energy storage engineering applications at sea, it is suggested that further research and engineering application of technologies such as the intrinsic safety, safety monitoring and early warning of energy storage under the anti-sloshing conditions of floating facilities at sea should be carried out.
    Related Articles | Metrics | Comments0
    Research Progress and Challenges of Ship Ballast Water Treatment
    ZHANG Weidong, DU Bin, QU Huifang, LI Tao
    Ocean Engineering Equipment and Technology    2023, 10 (4): 1-10.   DOI: 10.12087/oeet.2095-7297.2023.04.01
    Abstract765)      PDF(pc) (3948KB)(1659)       Save
    Ship ballast water is one of the main ways for the alien invasion. It is considered as one of the four threats to the marine environment. The ballast water convention established to solve this problem has stipulated the standards for ballast water treatment, which has entered into force on September 6,2019. This paper reviews the background and social needs of the research on ballast water treatment technology, analyzes the characteristics of different ballast water treatment technologies, introduces the latest achievements of the research on ballast water treatment technology in the academic community, and the efforts of the industrial community in the research and development of ballast water treatment systems, and discusses the challenges faced by ballast water treatment at different levels of standards, economy, technology, testing and law.
    Related Articles | Metrics | Comments0
    Analysis of the Reason of Corrosion and Prevention Measures for 316L Stainless Steel Pipeline
    BI Hangming
    Ocean Engineering Equipment and Technology    2023, 10 (4): 30-35.   DOI: 10.12087/oeet.2095-7297.2023.04.05
    Abstract667)      PDF(pc) (5312KB)(482)       Save
    The corrosion of stainless steel piping for a precommissioning offshore platform in the South China Sea is sampled and analyzed. The conclusion obtained from the test is that the chloride ion content exceeds the standard leading to serious corrosion of stainless steel pipelines. This paper explores the basic principles of damage caused by chloride ions to 316L stainless steel pipeline. From the perspective of offshore platform pipeline construction, for how to effectively prevent corrosion of stainless steel pipelines, we put forward relevant recommendations, and provide reference for subsequent offshore platform construction projects.
    Related Articles | Metrics | Comments0
    Analysis of the Characteristics of Offshore Wind Power Operation and Maintenance Technologies and Strategies
    YU Xichong1, LIU Chao1, LIU Xiaoyan1, LI Zhichuan2, WU Yufei1 LI Ouping1
    Ocean Engineering Equipment and Technology    2024, 11 (3): 18-21.   DOI: 10.12087/oeet.2095-7297.2024.03.03
    Abstract664)      PDF(pc) (1382KB)(287)       Save
    Based on the characteristics of offshore wind power operation and maintenance in China, this paper analyzes the current situation and development trend of offshore wind power operation and maintenance technology and equipment in China. Taking an offshore wind farm in the South China Sea as a research scenario, this paper proposes a vibration monitoring scheme for offshore wind turbine system, an offshore wind turbine boarding scheme, an offshore wind turbine maintenance and operation and maintenance scheme, and an offshore wind farm inspection scheme, which puts forward guiding significance for the operation and maintenance of offshore wind farms in China.
    Related Articles | Metrics | Comments0
    Review on Fuel Selection of LNG and Marine Methanol
    ZHOU Cheng, ZHOU Yi, LI Meng, SUN Bing, GU Yuxuan
    Ocean Engineering Equipment and Technology    2024, 11 (2): 12-14.   DOI: 10.12087/oeet.2095-7297.2024.02.03
    Abstract640)      PDF(pc) (973KB)(795)       Save
    In view of the high price of LNG and high production and transportation costs, in order to save labor costs and improve economic benefits, Marine methanol fuel is considered to replace LNG fuel. The advantages and limitations of the two fuels are described by comparing their carbon dioxide emissions, costs, management and storage, infrastructure construction, and future development difficulty.
    Related Articles | Metrics | Comments0
     Current Situation and Development Trend of Unmanned Platform Technology in Offshore Oilfield
    SUI Xianfu, QIU Hao, ZHANG Fu, ZHOU Chao, WANG Juanyan
    Ocean Engineering Equipment and Technology    2023, 10 (4): 111-116.   DOI: 10.12087/oeet.2095-7297.2023.04.16
    Abstract636)      PDF(pc) (2530KB)(445)       Save
    With the development of offshore oil field, the cost of production and operation is increasing rapidly.Unmanned platform technology has been widely concerned in recent years because of its simple structure, less equipment and low production and operation cost. However, the unmanned platform mode also exposes the problems of high cost of workover operation, difficulty of boarding the platform and difficulty of equipment monitoring in the process of production and operation. The author systematically summarizes the experience of unmanned platform development by investigating the advanced technologies and excellent practices in the current unmanned platform development process, which aims to provide a reference for the further promotion and application of unmanned platform technology.
    Related Articles | Metrics | Comments0
    Overview of the Development and Design of Dynamic Cable for Floating Offshore Wind Power in China
    LIN Zeyin, WANG Yibing, LI Dongsheng
    Ocean Engineering Equipment and Technology    2024, 11 (4): 41-46.   DOI: 10.12087/oeet.2095-7297.2024.04.07
    Abstract606)      PDF(pc) (2023KB)(1168)       Save
    In recent years, the global offshore wind power has developed rapidly. As nearshore resources become increasingly scarce, offshore wind power has gradually moved to the deeper sea. To accommodate the dynamic characteristics of floating wind turbines, floating platforms must be supported by dynamic cables. This is a comprehensive cable of transmitting electricity and control signals, with constantly changing position and force status, which can withstand the combined effect of wind, wave, current and other natural environment, to ensure the effective transmission of power and monitoring signals. Compared with foreign industries, Chinas dynamic cable industry started later, with the harsh working conditions and the lack of relevant technology. All these factors restrict the progress of the dynamic cable industry. This paper will provide a detailed introduction to the basic principles, current development status, key technologies, and challenges faced by floating wind turbine dynamic cables, summarizing the latest industry information and technology to support the development of Chinas dynamic cable industry.
    Related Articles | Metrics | Comments0
    Overview of the Development of Flexible Ocean CTD Sensors
    LI Jihao1, LIN Guanying2, WANG Nuansheng3, LI Yang3, LI Junyang1
    Ocean Engineering Equipment and Technology    2024, 11 (3): 69-77.   DOI: 10.12087/oeet.2095-7297.2024.03.11
    Abstract596)      PDF(pc) (5779KB)(1638)       Save
    Marine hydrological information plays a significant role in development and exploration of marine resources. Temperature, salinity and depth are fundamental elements of marine hydrology. Monitoring of marine temperature, salinity and depth data plays an important role in the development and utilization of marine resources. The conductivity temperature depth profiler (CTD) is the main instrument for observing seawater temperature and salinity profiles. By using CTD sensors, parameters such as temperature and conductivity of seawater at different depths can be measured. In recent years, flexible electronic sensors have demonstrated great potential for application due to their excellent stretchability and easy attachment, which not only achieve the sensing performance of traditional rigid sensors to a certain extent, but also compensate for the shortcomings of traditional sensors such as large volume and weight. This review introduces the research progress of flexible ocean CTD sensors in recent years, mainly including the working mechanism and classification, common materials, manufacturing processes of flexible sensors, and analyzes the structure, performance, and application platform of existing flexible ocean CTD sensors. Finally, the development of flexible ocean CTD sensors is prospected.
    Related Articles | Metrics | Comments0
    Life Prediction of Glass Fiber Reinforced Vinyl Ester Composites Under Seawater Corrosive Environment
    LI Xiang, LIU Xiao, LI Sen, LIU Chengcheng, LIU Xiaobin, GAO Shuang
    Ocean Engineering Equipment and Technology    2023, 10 (4): 107-110.   DOI: 10.12087/oeet.2095-7297.2023.04.15
    Abstract595)      PDF(pc) (1277KB)(318)       Save
    Fiber reinforced plastics shields are used in the development of offshore oil and gas fields in the South China Sea to protect critical facilities in underwater production systems. Fiberglass (FRP) is the most commonly used composite material, widely used in Marine and ocean engineering fields. By establishing the seawater corrosion resistance life model and defining the bending strength retention rate, the general equation of seawater corrosion resistance life and the seawater corrosion resistance life formula under deepsea low temperature conditions are obtained. Based on the flexural strength test results of longterm immersion in seawater at room temperature and high temperature, from the point of view of bending strength, corrosion resistance is short. it is predicted that the corrosion resistance life of glass fiber reinforced vinyl ester composites in the seawater temperature range of 0-4℃ is about 12.28-16.55 years for applications subject to low bending loads.
    Related Articles | Metrics | Comments0
    Research on Key Technology of Monpile Foundation Installation in Offshore Wind Farms
    ZHANG Jianxiang, SONG Yunfeng, LU peng
    Ocean Engineering Equipment and Technology    2024, 11 (4): 117-124.   DOI: 10.12087/oeet.2095-7297.2024.04.18
    Abstract552)      PDF(pc) (9251KB)(45)       Save
    In light of the rapid development of offshore wind power, more economically efficient construction techniques are required. Traditional heavy-duty maritime cranes in construction face high costs and significant risks. On the other hand, the balloon-assisted floatation technology, with its low cost, ease of operation, and ability to reduce crane loads, presents itself as a potential alternative. This article provides an in-depth exploration of the theoretical foundation, technological design, and advantages of balloon-assisted floatation technology, elucidating its potential application prospects in offshore wind turbine single pile foundation construction. Research has shown that the balloon-assisted buoyancy technology offers significant advantages in terms of enhancing construction efficiency, reducing costs, and minimizing environmental impact. It is poised for broad applications in the offshore wind sector in the future.
    Related Articles | Metrics | Comments0
    Research on Vibration Suppression of New Barge Floating Wind Turbine by TMD in the Platform
    JIANG Kun, CAI Qingqing, LI Sunwei
    Ocean Engineering Equipment and Technology    2023, 10 (4): 122-129.   DOI: 10.12087/oeet.2095-7297.2023.04.18
    Abstract497)      PDF(pc) (1461KB)(367)       Save
    Barge-type floating wind turbine is an important equipment for the development of offshore wind power, and its motion response can be effectively suppressed by a passive control device tuned mass damper (tuned mass damper, TMD). Based on the ITI Energy Barge wind turbine, this study designs a new Barge floating wind turbine foundation, establishes a wind turbine dynamic model configured with TMD in the platform, configures TMDs with different positions, masses, and damping parameters in the floating platform, and studies the change of the motion response of the floating wind turbine before and after the TMD with optimal parameters configured on the wind turbine platform under the action of wind and wave loads. The results show that after the TMD with a mass ratio of 3% and a damping ratio of 6% is configured on the top of the buoy in the new wind turbine platform, the front and rear and left and right displacements of the top of the wind turbine tower are reduced by 15.56% and 44.93% respectively. The pitch and roll suppression rate of the platform reaches 22.97% and 62.79%. The front and rear and left and right bending moments of the fan tower base are reduced by 15.62% and 39.8% respectively. At this time, the control effect of TMD is the best, and the overall stability of the wind turbine is greatly improved.
    Related Articles | Metrics | Comments0
     The Application of RBI Integrity Management to Deepwater Oil and Gas Exploitation
    LU Jin, ZHU Liyun, CHEN Miaomou, ZHANG Lin
    Ocean Engineering Equipment and Technology    2023, 10 (4): 140-150.   DOI: 10.12087/oeet.2095-7297.2023.04.21
    Abstract493)      PDF(pc) (1449KB)(115)       Save
    Compared to traditional timebased and conditionbased inspection methods, Riskbased Inspection (RBI), recently, is a new integrity management inspection technique which has been rapidly developed and applied to large offshore facilities. RBI is an advanced method for developing an optimum inspection plan and strategy which has coupled with techniques of database management, material damage and deterioration mechanism analysis, structural strength FEA, fracture mechanics for crack assessment, risk analysis and ranking, digital computer management system, etc. The RBI approach can guarantee that structures or equipment with higher risk could warrant more focused inspection than those with lower risk, which can effectively reduce inspection cost. This article will systematically discuss how to apply RBI technique for integrity management of large offshore facilities, while focusing on the application of RBI to the hull, mooring and riser systems of large deepwater offshore installations. Besides, a detailed case study on how to perform quantitative risk analysis on SN curve based offshore structures fatigue analysis.
    Related Articles | Metrics | Comments0
    Application of Underwater Reinforcement Repair Technique with Wrap Composite Materials of External Corrosion for Submarine Pipeline
    LIU Jun, , , , ZHANG Chuanxu, , , QU Jie, ,
    Ocean Engineering Equipment and Technology    2023, 10 (4): 24-29.   DOI: 10.12087/oeet.2095-7297.2023.04.04
    Abstract486)      PDF(pc) (2356KB)(459)       Save
    The safe service of submarine pipelines in oil, gas and water transportation is very important, and the long standing corrosion problem also affects the service life of submarine pipelines. The composite material reinforcement and repair technology has been widely used in onshore pipelines, but it has not been applied in the repair of submarine pipelines. A submarine pipeline adopts the composite material underwater winding reinforcement and repair technology to carry out practical application. The practical application proves that the composite material underwater winding reinforcement and repair technology is a safe and reliable reinforcement and repair technology. This paper will introduce the repair material properties of the composite underwater winding reinforcement repair technology, the application design of the repair system, and the construction technology of the repair system.
    Related Articles | Metrics | Comments0
    Steel Lazy-wave Riser Installation Method Analysis
    TIAN Zhen, LEI Zhenming, CHEN Ye, HE Jianwen, LIU Song, ZHONG Yang
    Ocean Engineering Equipment and Technology    2024, 11 (1): 122-129.   DOI: 10.12087/oeet.2095-7297.2024.01.19
    Abstract473)      PDF(pc) (16905KB)(65)       Save
    Standard steel catenary riser form is vulnerable to yielding and fatigue damages at the touch down point (TDP) location in the ultra-deepwater environment. Steel lazy-wave riser (SLWR) introduces a buoyancy section into the standard riser form, which can reduce the stress near the hang-off region, and at the same time isolate the dynamic response of the floating platform from TDP region, so as to improve the fatigue life of riser. SLWR installations are analyzed and compared among S-LAY, J-LAY and R-LAY methods, based on a potential ultra-deepwater project in Gabon. The results show that for the riser without buoyancy section, all three laying methods have sufficient layability, and S-LAY is not feasible for laying the 12" SLWR buoyancy section limited by the capacity of HYSY201; J-LAY and R-LAY are found to be more appropriate for both normal laying and buoyancy section laying of 12" SLWR in 2100m water depth. In general, empty pipe condition is better than the flooded condition in terms of layability regardless of laying methods. The feasibility of SLWR laying by S-LAY method can be improved by reducing water depth, pipe size and optimizing buoyancy module design. For J-LAY and R-LAY installation methods, if pipe catenary with buoyancy module section in empty pipe condition has no interference with lay tower and vessel, SLWR can be laid in empty pipe condition.

    Related Articles | Metrics | Comments0
    Application Research of Intelligent Technology in Improving Production Stability and Efficiency on Offshore Oil Platforms
    WU Binfeng
    Ocean Engineering Equipment and Technology    2024, 11 (2): 29-33.   DOI: 10.12087/oeet.2095-7297.2024.02.07
    Abstract466)      PDF(pc) (3661KB)(477)       Save
    With the continuous development of technology, intelligent technology plays an increasingly crucial role in the operation of offshore oil platforms. This paper begins by introducing the concept and background of intelligent technology in offshore oil platform. Subsequently, it delves into the detailed exploration of the application of intelligent technology in enhancing production stability and efficiency, including predictive maintenance, production process optimization, intelligent monitoring, and datadriven decision support. Finally, the paper summarizes the positive impact of intelligent technology on the production of offshore oil platform.

    Related Articles | Metrics | Comments0
    Study on Ideal Superstructure Design of Ship
    LIAO Shiyang, LIU Jun, ZENG Wenyuan
    Ocean Engineering Equipment and Technology    2023, 10 (4): 16-23.   DOI: 10.12087/oeet.2095-7297.2023.04.03
    Abstract452)      PDF(pc) (6248KB)(635)       Save
    The ideal superstructure means that the superstructure does not bend when the hull is bent, and the normal stress of the superstructure is consistent in the direction of height. Different from the strong superstructure and the light superstructure, the stress level of the ideal superstructure is close to the main deck, which can maximize the utilization of material strength. In this paper, a typical oil tanker is taken as the research object. Based on the composite beam method, considering the influence of shear hysteresis effect, the design method of ideal superstructure is discussed. According to the section characteristics of superstructure, the length of ideal superstructure is explored. Based on the theoretical formula of the ideal superstructure, the design length of the ideal superstructure is obtained according to the parameters of the transverse section of the ship. After the theoretical design scheme of the ideal superstructure is obtained, the stress distribution law of the deck of the ideal superstructure is verified by the finite element method. The verification results show that the normal stress level of the superstructure is close to the main deck, which can provide reference for the design of the early ideal superstructure. Finally, the deck thickness of the superstructure is adjusted to save materials and reduce the center of gravity.
    Related Articles | Metrics | Comments0
    Design and Application of the End-up System for the Suction Bucket Jacket
    WANG Shuai, YANG Guangjuan, WANG Xiaobin, HUANG Guilang, FAN Weiwei
    Ocean Engineering Equipment and Technology    2024, 11 (4): 110-116.   DOI: 10.12087/oeet.2095-7297.2024.04.17
    Abstract448)      PDF(pc) (8455KB)(208)       Save
    In response to the rapid development of offshore wind power equipment construction, relying on the existing suction bucket jacket construction project, this paper compares and analyzes the characteristics and performance of existing jacket hoisting technology, and innovatively designs a jacket end-up system according to project requirements, which is used for the vertical work of a 1400t jacket. The article analyzes and compares the advantages and disadvantages of the flipping system with traditional cranes, and uses finite element software to analyze the overall strength and stability of the end-up system. This system has been successfully applied in practical engineering, successfully end-up 50 sets of suction bucket jacket, proving the reliability and safety of the system, and providing the latest technical reference for the construction and installation of offshore wind power suction bucket jacket.
    Related Articles | Metrics | Comments0