诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (04): 362-370.doi: 10.16150/j.1671-2870.2024.04.003
收稿日期:
2024-02-18
接受日期:
2024-06-02
出版日期:
2024-08-25
发布日期:
2024-08-25
通讯作者:
周建桥 E-mail:zhousu30@126.com
ZHOU Jianqiao(), ZHANG Lu, XU Shangyan
Received:
2024-02-18
Accepted:
2024-06-02
Published:
2024-08-25
Online:
2024-08-25
摘要:
甲状腺结节在中国患病率高,达36.9%,女性显著高于男性,且存在地区差异。超声检查作为首选诊断工具,因无创、便捷及高灵敏度而被广泛应用。近年来,超声诊断技术不断发展,包括TIRADS系统、多模态超声、细针穿刺及分子检测、人工智能(artificial intelligence, AI)等。其中,2020版中国影像报告数据系统(China-Thyroid Imaging Reporting and Data System, C-TIRADS)结合中国国情,提高了诊断准确率。多模态超声评估结合多种超声技术,显著提高了诊断效能,减少了不必要的穿刺。分子检测与AI辅助诊断则进一步提升了诊断精度,但AI模型的泛化能力和长期临床应用效果尚需验证。超声引导下的介入治疗在甲状腺结节管理中占据重要地位,包括化学消融和热消融技术。化学消融主要用于囊性为主结节,热消融则适用于囊实性及实性结节,两者联合应用效果更佳。热消融技术在甲状腺微小乳头状癌治疗中的应用虽存争议,但初步研究的结果已显示了其疗效和安全性。尽管超声技术在甲状腺结节诊治中取得了显著进展,但仍存在挑战,如诊断标准的不统一、不同地区医院之间的设备及技术水平差异、热消融治疗的长期疗效与安全性缺乏大规模研究数据等。未来的发展方向包括改进风险分层系统、加强多模态超声评估研究、提升AI模型泛化能力、规范分子检测技术应用、探索消融治疗适应证和规范化疗效评估等。
中图分类号:
周建桥, 张璐, 徐上妍. 中国甲状腺结节超声诊治现状及挑战[J]. 诊断学理论与实践, 2024, 23(04): 362-370.
ZHOU Jianqiao, ZHANG Lu, XU Shangyan. Current status and challenges in ultrasound diagnosis and treatment of thyroid nodules in China[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(04): 362-370.
[1] | LI Y, JIN C, LI J, et al. Prevalence of thyroid nodules in China: A health examination cohort-based study[J]. Front Endocrinol (Lausanne), 2021, 12:676144. |
[2] |
LI Y, TENG D, BA J, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 Provinces of Mainland China[J]. Thyroid, 2020, 30(4):568-579.
doi: 10.1089/thy.2019.0067 pmid: 32075540 |
[3] |
SONG B, ZUO Z, TAN J, et al. Association of thyroid nodules with adiposity: a community-based cross-sectional study in China[J]. BMC Endocr Disord, 2018, 18(1):3.
doi: 10.1186/s12902-018-0232-8 pmid: 29374470 |
[4] |
YAO Y, CHEN X, WU S, et al. Thyroid nodules in centenarians: prevalence and relationship to lifestyle characteristics and dietary habits[J]. Clin Interv Aging, 2018, 13:515-522.
doi: 10.2147/CIA.S162425 pmid: 29662307 |
[5] | 杨勇, 王强, 杨陆婷, 等. 低剂量电离辐射对医务放射工作人员甲状腺影响Meta分析[J]. 中华放射医学与防护杂志, 2023, 43(6):447-456. |
YANG Y, WANG Q, YANG L T, et al. Meta-analysis of the effects of low-dose ionizing radiation on the thyroid of medical radiation workers[J]. Chin J Radiol Med Prot, 2023, 43(6):447-456. | |
[6] |
American Institute of Ultrasound in Medicine, American College of Radiology, Society for Pediatric Radiology, et al. AIUM practice guideline for the performance of a thyroid and parathyroid ultrasound examination[J]. J Ultrasound Med, 2013, 32(7):1319-1329.
doi: 10.7863/ultra.32.7.1319 pmid: 23804357 |
[7] |
BRITO J P, GIONFRIDDO M R, AL NOFAL A, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis[J]. J Clin Endocrinol Metab, 2014, 99(4):1253-1263.
doi: 10.1210/jc.2013-2928 pmid: 24276450 |
[8] |
TESSLER F N, MIDDLETON W D, GRANT E G, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White paper of the ACR TI-RADS committee[J]. J Am Coll Radiol, 2017, 14(5):587-595.
doi: S1546-1440(17)30186-2 pmid: 28372962 |
[9] |
RUSS G, BONNEMA S J, ERDOGAN M F, et al. European Thyroid Association Guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS[J]. Eur Thyroid J, 2017, 6(5):225-237.
doi: 10.1159/000478927 pmid: 29167761 |
[10] | SHIN J H, BAEK J H, CHUNG J, et al. Ultrasonography diagnosis and imaging-based management of thyroid no-dules: revised korean society of thyroid radiology consensus statement and recommendations[J]. Korean J Radiol, 2016, 17(3):370-395. |
[11] | ZHOU J, YIN L, WEI X, et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS[J]. Endocrine, 2020, 70(2):256-279. |
[12] | LI J, LI C, ZHOU X, et al. US Risk Stratification System for follicular thyroid neoplasms[J]. Radiology, 2023, 309(2):e230949. |
[13] |
HOANG J K, ASADOLLAHI S, DURANTE C, et al. An international survey on utilization of Five Thyroid Nodule Risk Stratification Systems: a needs assessment with future implications[J]. Thyroid, 2022, 32(6):675-681.
doi: 10.1089/thy.2021.0558 pmid: 35229624 |
[14] | DURANTE C, HEGEDÜS L, NA D G, et al. International expert consensus on US lexicon for thyroid nodules[J]. Radiology, 2023, 309(1):e231481. |
[15] | RUAN J, XU X, CAI Y, et al. A practical CEUS Thyroid Reporting System for thyroid nodules[J]. Radiology, 2022, 305(1):149-159. |
[16] | XIAO F, LI J M, HAN Z Y, et al. Multimodality US versus Thyroid Imaging Reporting and Data System criteria in recommending fine-needle aspiration of thyroid nodu-les[J]. Radiology, 2023, 307(5):e221408. |
[17] |
CIBAS E S, ALI S Z. The Bethesda System for reporting thyroid cytopathology[J]. Thyroid, 2009, 19(11):1159-1165.
doi: 10.1089/thy.2009.0274 pmid: 19888858 |
[18] |
CIBAS E S, ALI S Z. The 2017 Bethesda System for reporting thyroid cytopathology[J]. Thyroid, 2017, 27(11):1341-1346.
doi: 10.1089/thy.2017.0500 pmid: 29091573 |
[19] |
ALI S Z, BALOCH Z W, COCHAND-PRIOLLET B, et al. The 2023 Bethesda System for reporting thyroid cytopathology[J]. J Am Soc Cytopathol, 2023, 12(5):319-325.
doi: 10.1016/j.jasc.2023.05.005 pmid: 37438235 |
[20] |
BONGIOVANNI M, SPITALE A, FAQUIN W C, et al. The Bethesda System for reporting thyroid cytopathology: a meta-analysis[J]. Acta Cytol, 2012, 56(4):333-339.
doi: 10.1159/000339959 pmid: 22846422 |
[21] |
TEE Y Y, LOWE A J, BRAND C A, et al. Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules: a comprehensive literature review[J]. Ann Surg, 2007, 246(5):714-720.
doi: 10.1097/SLA.0b013e3180f61adc pmid: 17968160 |
[22] |
NIKIFOROV Y E, OHORI N P, HODAK S P, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples[J]. J Clin Endocrinol Metab, 2011, 96(11):3390-3397.
doi: 10.1210/jc.2011-1469 pmid: 21880806 |
[23] | MOSES W, WENG J, SANSANO I, et al. Molecular tes-ting for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy[J]. World J Surg, 2010, 34(11):2589-2594. |
[24] |
VALDERRABANO P, LEON M E, CENTENO B A, et al. Institutional prevalence of malignancy of indeterminate thyroid cytology is necessary but insufficient to accurately interpret molecular marker tests[J]. Eur J Endocrinol, 2016, 174(5):621-629.
doi: 10.1530/EJE-15-1163 pmid: 26903551 |
[25] | XU H, ZHANG Y, WU H, et al. High diagnostic accuracy of epigenetic imprinting biomarkers in thyroid nodu-les[J]. J Clin Oncol, 2023, 41(6):1296-1306. |
[26] |
STEAD W W. Clinical implications and challenges of artificial intelligence and deep learning[J]. JAMA, 2018, 320(11):1107-1108.
doi: 10.1001/jama.2018.11029 pmid: 30178025 |
[27] | NAGENDRAN M, CHEN Y, LOVEJOY C A, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies[J]. BMJ, 2020, 368:m689. |
[28] | XU W, JIA X, MEI Z, et al. Generalizability and diagnostic performance of AI models for thyroid US[J]. Radiology, 2023, 307(5):e221157. |
[29] | DAVE A, MARU L, TRIPATHI M. Importance of Universal screening for thyroid disorders in first trimester of pregnancy[J]. Indian J Endocrinol Metab, 2014, 18(5):735-738. |
[30] | 中国超声医学工程学会浅表器官及外周血管专业委员会. 甲状腺及相关颈部淋巴结超声若干临床常见问题专家共识(2018版)[J]. 中国超声医学杂志, 2019, 35(3):193-204. |
Chinese Society of Ultrasound Medical Engineering Superficial Organ and Peripheral Vascular Professional Committee. Expert consensus on several common clinical problems of thyroid and related cervical lymph node ultrasound (2018 edition)[J]. Chin J Ultrasound Med, 2019, 35(3):193-204. | |
[31] | 中华医学会超声医学分会介入超声学组, 中国研究型医院学会肿瘤介入专业委员会. 多脏器囊肿硬化治疗中国专家共识(2021版)[J]. 中华超声影像学杂志, 2021, 30(8):645-654. |
Interventional Ultrasound Group of Ultrasonic Committee of Chinese Medical Association, Interventional Oncology Committee of Chinese Research Hospital Association. Chinese expert consensus on sclerotherapy for cysts of multiple organs (2021 Edition)[J]. Chin J Ultrasonogr, 2021, 30(8):645-654. | |
[32] |
OZDERYA A, AYDIN K, GOKKAYA N, et al. Percutaneous ethanol injection for benign cystic and mixed thyroid nodules[J]. Endocr Pract, 2018, 24(6):548-555.
doi: 10.4158/EP-2018-0013 pmid: 29624094 |
[33] | MERCHANTE ALFARO A Á, GARZÓN PASTOR S, PÉREZ NARANJO S, et al. Percutaneous ethanol injection therapy as the first line of treatment of symptomatic thyroid cysts[J]. Endocrinol Diabetes Nutr (Engl Ed), 2021, 68(7):458-464. |
[34] | CESAREO R, TABACCO G, NACIU A M, et al. Long-term efficacy and safety of percutaneous ethanol injection (PEI) in cystic thyroid nodules: A systematic review and meta-analysis[J]. Clin Endocrinol (Oxf), 2022, 96(2):97-106. |
[35] | 陈吉东, 熊晏群, 罗俊, 等. 超声引导聚桂醇注射液硬化治疗甲状腺囊性病变疗效观察[J]. 实用医院临床杂志, 2013, 10(6):77-78. |
CHEN J D, XIONG Y Q, LUO J, et al. Clinical efficiency of ultrasound-guided sclerosing agent injection in treatment of benign thyroid cysts[J]. Pract J Clin Med, 2013, 10(6):77-78. | |
[36] | GAO K, DAI W, WANG F, et al. Efficacy assessment and analysis of related factors of ultrasound-guided percutaneous lauromacrogol injection for cystic thyroid nodu-les[J]. J Ultrasound Med, 2023, 42(5):1093-1101. |
[37] |
MIN X, ZHANG Z, CHEN Y, et al. Comparison of the effectiveness of lauromacrogol injection for ablation and microwave ablation in the treatment of predominantly cystic thyroid nodules: a multicentre study[J]. BMC Cancer, 2023, 23(1):785.
doi: 10.1186/s12885-023-11301-7 pmid: 37612615 |
[38] |
CLARK R D E, LUO X, ISSA P P, et al. A clinical practice review of percutaneous ethanol injection for thyroid nodules: state of the art for benign, cystic lesions[J]. Gland Surg, 2024, 13(1):108-116.
doi: 10.21037/gs-22-568 pmid: 38323234 |
[39] | 李明月, 林印胜, 陈梅, 等. 超声引导下囊内注射聚桂醇硬化治疗甲状腺囊性结节有效性及安全性的meta分析[J]. 介入放射学杂志, 2021, 30(4):374-379. |
LI M Y, LIN Y S, CHEN M, et al. Ultrasound-guided sclerotherapy with injection of sclerosing agent polidocanol for thyroid cystic nodules:a meta analysis of its effectiveness and safety[J]. J Intervent Radiol, 2021, 30(4):374-379. | |
[40] |
GONG X, WANG F, DU H, et al. Comparison of ultrasound-guided percutaneous polidocanol injection versus percutaneous ethanol injection for treatment of benign cystic thyroid nodules[J]. J Ultrasound Med, 2018, 37(6):1423-1429.
doi: 10.1002/jum.14482 pmid: 29219197 |
[41] |
DOBNIG H, AMREIN K. Monopolar radiofrequency ablation of thyroid nodules: a prospective austrian single-center study[J]. Thyroid, 2018, 28(4):472-480.
doi: 10.1089/thy.2017.0547 pmid: 29490593 |
[42] | ZHENG B W, WANG J F, JU J X, et al. Efficacy and safety of cooled and uncooled microwave ablation for the treatment of benign thyroid nodules: a systematic review and meta-analysis[J]. Endocrine, 2018, 62(2):307-317. |
[43] | QIAN Y, LI Z, FAN C, et al. Comparison of ultrasound-guided microwave ablation, laser ablation, and radiofrequency ablation for the treatment of elderly patients with benign thyroid nodules: A meta-analysis[J]. Exp Gerontol, 2024, 191:112425. |
[44] | 彭晓琳, 赵璐, 宋牧. 超声引导下热消融治疗甲状腺疾病的研究进展[J]. 中国微创外科杂志, 2022, 22(2):170-174. |
PENG X L. Research progress on ultrasound-guided thermal ablation therapy for thyroid diseases[J]. Chin J Min Inv Surg, 2022, 22(2):170-174. | |
[45] | 华晴, 周建桥. 甲状腺良性结节超声引导下热消融并发症研究进展[J]. 诊断学理论与实践, 2023, 22(2):184-189. |
HUA Q, ZHOU J Q. Advances in study on complications encountered in ultrasonography-guided thermal ablation of benign thyroid nodules[J]. J Diagn Concepts Pract, 2023, 22(2):184-189. | |
[46] |
YAN L, ZHANG M, SONG Q, et al. Ultrasound-guided radiofrequency ablation versus thyroid lobectomy for low-risk papillary thyroid microcarcinoma: a propensity-matched cohort study of 884 patients[J]. Thyroid, 2021, 31(11):1662-1672.
doi: 10.1089/thy.2021.0100 pmid: 34269611 |
[47] | LI J, LIU Y, LIU J, et al. Ultrasound-guided percutaneous microwave ablation versus surgery for papillary thyroid microcarcinoma[J]. Int J Hyperthermia, 2018, 34(5):653-659. |
[48] | ZHOU W, NI X, XU S, et al. Ultrasound-guided laser ablation versus surgery for solitary papillary thyroid microcarcinoma: a retrospective study[J]. Int J Hyperthermia, 2019, 36(1):897-904. |
[49] |
MIN Y, WANG X, CHEN H, et al. Thermal ablation for papillary thyroid microcarcinoma: How far we have come?[J]. Cancer Manag Res, 2020, 12:13369-13379.
doi: 10.2147/CMAR.S287473 pmid: 33380841 |
[50] | 中国抗癌协会肿瘤消融治疗专业委员会, 中国临床肿瘤学会CSCO肿瘤消融专家委员会, 中国医师协会介入医师分会肿瘤消融专业委员会, 等. 甲状腺乳头状癌热消融治疗专家共识(2024版)[J]. 中华内科杂志, 2024, 63(4):355-364. |
Society of Tumor Ablation Therapy of the Chinese Anti-Cancer Association, the Ablation Expert Committee of the Chinese Society of Clinical Oncology CSCO, Chinese Medical Doctor Association College of Interventionalists Tumor Ablation Committee, et al. Expert consensus on thermal ablation of papillary thyroid cancer (2024 edition)[J]. Chin J Intern Med, 2024, 63(4):355-364. | |
[51] | ZHANG L, ZHANG G P, ZHAN W W, et al. The feasibi-lity and efficacy of ultrasound-guided percutaneous laser ablation for multifocal papillary thyroid microcarcinoma[J]. Front Endocrinol (Lausanne), 2022, 13:921812. |
[52] | YAN L, ZHANG M, SONG Q, et al. Clinical outcomes of radiofrequency ablation for multifocal papillary thyroid microcarcinoma versus unifocal papillary thyroid microcarcinoma: a propensity-matched cohort study[J]. Eur Radiol, 2022, 32(2):1216-1226. |
[53] | CAO X J, LIU J, ZHU Y L, et al. Efficacy and safety of thermal ablation for solitary T1bN0M0 papillary thyroid carcinoma: a multicenter study[J]. J Clin Endocrinol Metab, 2021, 106(2):e573-e581. |
[54] | XIAO J, ZHANG Y, ZHANG M, et al. Ultrasonography-guided radiofrequency ablation for the treatment of T2N0M0 papillary thyroid carcinoma: a preliminary study[J]. Int J Hyperthermia, 2021, 38(1):402-408. |
[55] | HUANG R, WANG D, LIN J, et al. Effect of different retention doses of ultrasound-guided polidocanol chemical ablation for benign cystic-solid thyroid nodules[J]. Am J Otolaryngol, 2024, 45(4):104259. |
[56] | LIN Y, LI P, SHI Y P, et al. Sequential treatment by polidocanol and radiofrequency ablation of large benign partially cystic thyroid nodules with solid components: Efficacy and safety[J]. Diagn Interv Imaging, 2020, 101(6):365-372. |
[57] | 王兵, 隋洋, 孙医学, 等. 超声引导无水乙醇注射联合射频消融治疗甲状腺囊实性结节的临床研究[J]. 齐齐哈尔医学院学报, 2019, 40(19):2414-2417. |
WANG B, SUI Y, SUN Y X, et al. Clinical study of ultrasound - guided percutaneous anhydrous ethanol injection combined with radiofrequency ablation in treatment of thyroid cystic solid nodules[J]. J Qiqihar Med Univ, 2019, 40(19):2414-2417. | |
[58] | 李静, 周和平, 孙建鹰, 等. 超声引导下射频消融术联合无水乙醇消融治疗甲状腺囊实性结节疗效分析[J]. 中国社区医师, 2020, 36(20):16-17. |
LI J, ZHOU H P, SUN J Y, et al. Analysis of the effect of ultrasound-guided radio frequency catheter ablation combined with anhydrous ethanol ablation in the treatment of solid nodules of thyroid cyst[J]. Chin Community Doct, 2020, 36(20):16-17. | |
[59] | 刘芳芳, 宋勇罡, 任泽强, 等. 微波消融术联合聚桂醇治疗甲状腺囊实性肿瘤的效果分析[J]. 中国现代普通外科进展, 2021, 24(4):294-295,298. |
LIU F F, SONG Y G, REN Z Q, et al. Clinical analys is and exploration of microw ave ablation combined with lauromarogol in the treatment of thyroid cystic solid tumor[J]. Chin J Curr Adv Gen Surg, 2021, 24(4):294-295,298. | |
[60] |
NEGRO R, RUCCO M, CREANZA A, et al. Machine learning prediction of radiofrequency thermal ablation efficacy: a new option to optimize thyroid nodule selection[J]. Eur Thyroid J, 2020, 9(4):205-212.
doi: 10.1159/000504882 pmid: 32903883 |
[61] | ZHANG S, WU S, SHANG S, et al. Detection and monitoring of thermal lesions induced by microwave ablation using ultrasound imaging and convolutional neural networks[J]. IEEE J Biomed Health Inform, 2020, 24(4):965-973. |
[62] |
CITONE M, FANELLI F, FALCONE G, et al. A closer look to the new frontier of artificial intelligence in the percutaneous treatment of primary lesions of the liver[J]. Med Oncol, 2020, 37(6):55.
doi: 10.1007/s12032-020-01380-y pmid: 32424627 |
[1] | 李静, 单忠艳. 我国甲状腺功能亢进的诊治现状及挑战[J]. 诊断学理论与实践, 2024, 23(04): 347-353. |
[2] | 伏秋燚, 展颖, 谭令, 朱宏, 朱乃懿, 孙琨, 柴丽, 柴维敏. 全野数字乳腺X线摄影及联合数字乳腺断层合成X线摄影在乳腺癌诊断中效能评价[J]. 诊断学理论与实践, 2024, 23(04): 385-391. |
[3] | 杨逸轩, 周建桥. 甲状腺结节热消融治疗适应证扩展的研究进展[J]. 诊断学理论与实践, 2024, 23(04): 424-429. |
[4] | 李卓含, 黄新韵, 郭睿, 李彪. 18F-FDG PET/CT在滤泡性淋巴瘤诊断和预后评估中的研究进展[J]. 诊断学理论与实践, 2024, 23(04): 439-444. |
[5] | 张天翼, 严福华. 能量CT虚拟单能量图像与碘图在腹部实质性脏器疾病诊断中的应用进展[J]. 诊断学理论与实践, 2024, 23(04): 452-456. |
[6] | 丁宁, 刘琳, 金佩佩, 王芳, 王天凯. 网织红细胞平均血红蛋白含量在缺铁性贫血及其严重程度的诊断效能分析[J]. 诊断学理论与实践, 2024, 23(03): 318-323. |
[7] | 中国老年医学学会血液学分会MDS专委会. 中国老年骨髓增生异常性肿瘤诊断和治疗专家共识(2024版)[J]. 诊断学理论与实践, 2024, 23(03): 285-296. |
[8] | 王刚, 齐金蕾, 刘馨雅, 任汝静, 林绍慧, 胡以松, 李海霞, 谢心怡, 王金涛, 李建平, 朱怡康, 高梦伊, 杨竣杰, 王怡然, 井玉荣, 耿介立, 支楠, 曹雯炜, 徐群, 余小萍, 朱圆, 周滢, 王琳, 高超, 李彬寅, 陈生弟, 袁芳, 窦荣花, 刘晓云, 李雪娜, 尹雅芙, 常燕, 徐刚, 辛佳蔚, 钟燕婷, 李春波, 王颖, 周脉耕, 陈晓春, 代表中国阿尔茨海默病报告编写组. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(03): 219-256. |
[9] | 冯原, 何钊, 孙青芳, 孙伯民, 严福华, 杨广中. 磁共振介入成像及其临床应用进展[J]. 诊断学理论与实践, 2024, 23(02): 108-113. |
[10] | 沈连军, 吴蔚, 吉薇, 王红, 孙幸, 施青青, 孙梅, 顾健, 倪军. 急性粒-单核细胞白血病患者造血干细胞移植后微血栓形成凝血指标监测及治疗1例报告[J]. 诊断学理论与实践, 2024, 23(02): 180-183. |
[11] | 高梦, 柴维敏, 严福华. 胰腺囊性肿瘤的CT/MRI诊断进展[J]. 诊断学理论与实践, 2024, 23(02): 184-191. |
[12] | 黄睿, 饶慧瑛. “消除”背景下的丙型肝炎病毒感染现状及筛查、诊断对策[J]. 诊断学理论与实践, 2024, 23(01): 1-8. |
[13] | 姜绍文, 周惠娟, 谢青. 我国原发性肝癌筛查的现状、挑战及发展方向[J]. 诊断学理论与实践, 2024, 23(01): 9-15. |
[14] | 周妍, 张旻. 我国轻度支气管哮喘诊治现状及对策[J]. 诊断学理论与实践, 2023, 22(06): 520-526. |
[15] | 倪仲馨, 陈慧. ADNEX模型鉴别转移性与原发性卵巢癌的诊断效能研究[J]. 诊断学理论与实践, 2023, 22(06): 573-578. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||