内科理论与实践 ›› 2023, Vol. 18 ›› Issue (02): 128-130.doi: 10.16138/j.1673-6087.2023.02.014
张梦潇1, 韦晓2, 张少红2, 陈国芳2(), 刘超2()
收稿日期:
2021-08-09
出版日期:
2023-04-25
发布日期:
2023-05-15
通讯作者:
陈国芳 E-mail: 基金资助:
ZHANG Mengxiao1, WEI Xiao2, ZHANG Shaohong2, et al
Received:
2021-08-09
Online:
2023-04-25
Published:
2023-05-15
中图分类号:
张梦潇, 韦晓, 张少红, 陈国芳, 刘超. 生长分化因子15:减重治疗的新靶点[J]. 内科理论与实践, 2023, 18(02): 128-130.
ZHANG Mengxiao, WEI Xiao, ZHANG Shaohong, et al . Growth differentiation factor 15: a new target for weight management[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 128-130.
[1] |
Francque S, Szabo G, Abdelmalek MF, et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 24-39.
doi: 10.1038/s41575-020-00366-5 pmid: 33093663 |
[2] |
Lean MEJ, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial[J]. Lancet, 2018, 391(10120): 541-551.
doi: S0140-6736(17)33102-1 pmid: 29221645 |
[3] |
Baek SJ, Okazaki R, Lee SH, et al. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia[J]. Gastroenterology, 2006, 131(5): 1553-1560.
doi: 10.1053/j.gastro.2006.09.015 pmid: 17101328 |
[4] | Xiong Y, Walker K, Min X, et al. Long-acting MIC-1/GDF15 molecules to treat obesity: evidence from mice to monkeys[J]. Sci Transl Med, 2017, 9(412). |
[5] |
Baek SJ, Eling T. Growth differentiation factor 15 (GDF15)[J]. Pharmacol Ther, 2019, 198: 46-58.
doi: 10.1016/j.pharmthera.2019.02.008 URL |
[6] |
Hsu JY, Crawley S, Chen M, et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15[J]. Nature, 2017, 550(7675): 255-259.
doi: 10.1038/nature24042 URL |
[7] |
Tsai VWW, Husaini Y, Sainsbury A, et al. The MIC-1/GDF15-GFRAL pathway in energy homeostasis[J]. Cell Metab, 2018, 28(3): 353-368.
doi: 10.1016/j.cmet.2018.07.018 URL |
[8] |
Wiklund FE, Bennet AM, Magnusson PK, et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15)[J]. Aging Cell, 2010, 9(6): 1057-1064.
doi: 10.1111/j.1474-9726.2010.00629.x URL |
[9] |
Ahmed DS, Isnard S, Lin J, et al. GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer[J]. J Cancer, 2021, 12(4): 1125-1132.
doi: 10.7150/jca.50376 pmid: 33442410 |
[10] |
Yang L, Chang CC, Sun Z, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand[J]. Nat Med, 2017, 23(10): 1158-1166.
doi: 10.1038/nm.4394 pmid: 28846099 |
[11] |
Mullican SE, Lin-Schmidt X, Chin CN, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates[J]. Nat Med, 2017, 23(10): 1150-1157.
doi: 10.1038/nm.4392 pmid: 28846097 |
[12] |
Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL[J]. Nat Med, 2017, 23(10): 1215-1219.
doi: 10.1038/nm.4393 pmid: 28846098 |
[13] |
Tsai VW, Macia L, Johnen H, et al. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator[J]. PLoS One, 2013, 8(2): e55174.
doi: 10.1371/journal.pone.0055174 URL |
[14] |
Chung HK, Ryu D, Kim KS, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis[J]. J Cell Biol, 2017, 216(1): 149-165.
doi: 10.1083/jcb.201607110 pmid: 27986797 |
[15] |
Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism[J]. Int J Obes(Lond), 2014, 38(12): 1555-1564.
doi: 10.1038/ijo.2014.27 |
[16] |
Frikke-Schmidt H, Hultman K, Galaske JW, et al. GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice[J]. Mol Metab, 2019, 21: 13-21.
doi: S2212-8778(18)31143-8 pmid: 30685336 |
[17] |
Dolo PR, Yao L, Liu PP, et al. Effect of sleeve gastrectomy on plasma growth differentiation factor-15 (GDF15) in human[J]. Am J Surg, 2020, 220(3):725-730.
doi: S0002-9610(20)30053-2 pmid: 32014297 |
[18] |
Kleinert M, Bojsen-Møller KN, Jørgensen NB, et al. Effect of bariatric surgery on plasma GDF15 in humans[J]. Am J Physiol Endocrinol Metab, 2019, 316(4): E615-E621.
doi: 10.1152/ajpendo.00010.2019 URL |
[19] |
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin[J]. Diabetologia, 2017, 60(9): 1577-1585.
doi: 10.1007/s00125-017-4342-z pmid: 28776086 |
[20] |
Gerstein HC, Pare G, Hess S, et al. Growth differentiation factor 15 as a novel biomarker for metformin[J]. Diabetes Care, 2017, 40(2): 280-283.
doi: 10.2337/dc16-1682 pmid: 27974345 |
[21] |
Coll AP, Chen M, Taskar P, et al. GDF15 mediates the effects of metformin on body weight and energy balance[J]. Nature, 2020, 578(7795): 444-448.
doi: 10.1038/s41586-019-1911-y |
[22] |
Zhao J, Li M, Chen Y, et al. Elevated serum growth differentiation factor 15 levels in hyperthyroid patients[J]. Front Endocrinol (Lausanne), 2019, 9: 793.
doi: 10.3389/fendo.2018.00793 URL |
[23] |
Breit SN, Brown DA, Tsai VW. The GDF15-GFRAL pathway in health and metabolic disease[J]. Annu Rev Physiol, 2021, 83: 127-151.
doi: 10.1146/physiol.2021.83.issue-1 URL |
[24] |
Tsai VW, Zhang HP, Manandhar R, et al. GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS[J]. Int J Obes (Lond), 2019, 43(12): 2370-2380.
doi: 10.1038/s41366-019-0365-5 |
[25] |
Johnen H, Lin S, Kuffner T, et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1[J]. Nat Med, 2007, 13(11): 1333-1340.
doi: 10.1038/nm1677 pmid: 17982462 |
[26] |
Hale C, Véniant MM. Growth differentiation factor 15 as a potential therapeutic for treating obesity[J]. Mol Metab, 2021, 46: 101117.
doi: 10.1016/j.molmet.2020.101117 URL |
[27] |
Patel S, Alvarez-Guaita A, Melvin A, et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans[J]. Cell Metab, 2019, 29(3): 707-718.
doi: S1550-4131(18)30753-8 pmid: 30639358 |
[28] |
Campderrós L, Moure R, Cairó M, et al. Brown adipocytes secrete GDF15 in response to thermogenic activation[J]. Obesity, 2019, 27(10): 1606-1616.
doi: 10.1002/oby.22584 pmid: 31411815 |
[29] |
Lee SE, Kang SG, Choi MJ, et al. Growth differentiation factor 15 mediates systemic glucose regulatory action of T-helper type 2 cytokines[J]. Diabetes, 2017, 66(11): 2774-2788.
doi: 10.2337/db17-0333 pmid: 28874416 |
[30] |
Eddy AC, Trask AJ. Growth differentiation factor-15 and its role in diabetes and cardiovascular disease[J]. Cytokine Growth Factor Rev, 2021, 57: 11-18.
doi: 10.1016/j.cytogfr.2020.11.002 URL |
[1] | 韦坤辰, 谢芸, 李青峰. 皮肤软组织扩张的相关研究进展 [J]. 组织工程与重建外科杂志, 2023, 19(1): 70-. |
[2] | 高玉莲, 冯耘, 倪磊. 糖尿病人群中耐药革兰阴性菌血流感染的研究进展[J]. 内科理论与实践, 2023, 18(02): 124-127. |
[3] | 张音, 沈宏华, 许轶明, 任蕾, 李骏, 吴顺军, 凌小楠. 肌少症合并腹型肥胖对住院老年人肌力及躯体功能的影响[J]. 内科理论与实践, 2023, 18(02): 76-82. |
[4] | 中华医学会内分泌学分会. 老年与儿童青少年糖尿病人群新型冠状病毒感染临床应对指南[J]. 内科理论与实践, 2023, 18(01): 10-12. |
[5] | 张梦潇, 孙烁烁, 韦晓, 张少红, 陈国芳, 刘超. 生酮饮食诱导db/db小鼠肝脏脂肪沉积[J]. 内科理论与实践, 2023, 18(01): 56-63. |
[6] | 卜凡玉 郭晓峰 徐鹏 王进 薛明宇 潘筱云. 抗生素骨水泥联合其他综合干预措施治疗糖尿病足骨髓炎[J]. 组织工程与重建外科杂志, 2022, 18(4): 328-. |
[7] | 缪雅, 刘丽丽, 侯田志超, 严青华, 庞怡, 吴春晓, 程旻娜, 施燕, 黎衍云, 田景琰. 上海糖尿病前期人群恶性肿瘤发病风险分析[J]. 内科理论与实践, 2022, 17(06): 435-440. |
[8] | 阮铭, 侯田志超, 王海燕, 黎衍云, 周冰心, 包超慧, 秦洁洁, 王宇光, 方海, 朱伟嵘, 田景琰. 糖尿病前期“治未病”的几何深度学习与计算医学研究展望[J]. 内科理论与实践, 2022, 17(06): 475-481. |
[9] | 秦雪, 郭华, 张云云, 崔小川. C1q肿瘤坏死因子相关蛋白3与代谢相关疾病的研究进展[J]. 内科理论与实践, 2022, 17(06): 482-485. |
[10] | 叶雅芬, 杨颖, 韩峻峰. 脂肪组织衰老的细胞学改变及其分子机制研究进展[J]. 诊断学理论与实践, 2022, 21(05): 650-654. |
[11] | 朱思毅 综述, 陈小松, 沈坤炜 审校. 肥胖与早期乳腺癌预后和辅助治疗疗效的研究进展[J]. 外科理论与实践, 2022, 27(05): 468-472. |
[12] | 许晴, 邵慧英, 陈帅, 全进伟, 周清芬, 王敏慧. 延续健康教育和指导对干预2型糖尿病患者冠状动脉斑块进展的影响[J]. 内科理论与实践, 2022, 17(04): 330-333. |
[13] | 高晶晶, 高艳虹. 早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
[14] | 孙洪平, 陈国芳, 刘超. 植物性饮食与2型糖尿病的研究进展[J]. 内科理论与实践, 2022, 17(04): 349-352. |
[15] | 宣呈杰, 卞冬生, 蒋咏梅, 陈宇菲, 金佳斌, 施咏梅. 营养治疗对减重术后身体成分及静息能量消耗的影响[J]. 外科理论与实践, 2022, 27(03): 244-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||