内科理论与实践 ›› 2024, Vol. 19 ›› Issue (03): 207-211.doi: 10.16138/j.1673-6087.2024.03.11
收稿日期:
2023-12-25
出版日期:
2024-06-28
发布日期:
2024-09-09
通讯作者:
金钧 E-mail:jinjundoctor@163.com基金资助:
Received:
2023-12-25
Online:
2024-06-28
Published:
2024-09-09
摘要:
大量微生物寄居在人体肠道内,参与营养物质的消化和吸收,并产生大量代谢产物,参与调解宿主功能,保护宿主免受疾病损伤。胆汁酸由胆固醇代谢产生,经肠道菌群代谢转化为次级胆汁酸。胆汁酸有助于脂质消化吸收,与肠道菌群相互作用,同时肠道菌群的组成和数量也调控胆汁酸代谢。在脓毒症发生时,肠道菌群和胆汁酸代谢紊乱,与脓毒症的不良预后相关。本文阐述了胆汁酸的代谢过程、胆汁酸与肠道菌群的相互作用、脓毒症期间肠道菌群与胆汁酸的变化,为脓毒症的防治提供新思路。
中图分类号:
杨瑾, 韦瑶, 金钧. 胆汁酸与肠道菌群的相互作用及对脓毒症的影响[J]. 内科理论与实践, 2024, 19(03): 207-211.
YANG Jin, WEI Yao, JIN Jun. Interaction of bile acids with the gut microbiota and their effects on sepsis[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(03): 207-211.
[1] | Lin S, Wang S, Wang P, et al. Bile acids and their receptors in regulation of gut health and diseases[J]. Prog Lipid Res, 2023, 89:101210. |
[2] | Eleftheriotis G, Tsounis EP, Aggeletopoulou I, et al. Alterations in gut immunological barrier in SARS-CoV-2 infection and their prognostic potential[J]. Front Immunol, 2023, 14:1129190. |
[3] | Shi Q, Yuan X, Zeng Y, et al. Crosstalk between gut microbiota and bile acids in cholestatic liver disease[J]. Nutrients, 2023, 15(10):2411. |
[4] | Perino A, Demagny H, Velazquez-Villegas L, et al. Molecular physiology of bile acid signaling in health, disease, and aging[J]. Physiol Rev, 2021, 101(2):683-731. |
[5] | Cai J, Rimal B, Jiang C, et al. Bile acid metabolism and signaling, the microbiota, and metabolic disease[J]. Pharmacol Ther, 2022, 237:108238. |
[6] |
Li-Hawkins J, Gåfvels M, Olin M, et al. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice[J]. J Clin Invest, 2002, 110(8):1191-200.
pmid: 12393855 |
[7] | Warden C, Brantley MA Jr. Glycine-conjugated bile acids protect RPE tight junctions against oxidative stress and inhibit choroidal endothelial cell angiogenesis in vitro[J]. Biomolecules, 2021, 11(5):626. |
[8] | Shiha MG, Ashgar Z, Fraser EM, et al. High prevalence of primary bile acid diarrhoea in patients with functional diarrhoea and irritable bowel syndrome-diarrhoea, based on Rome Ⅲ and Rome Ⅳ criteria[J]. EClinicalMedicine, 2020, 25:100465. |
[9] | Thibaut MM, Gillard J, Dolly A, et al. Bile acid dysregulation is intrinsically related to cachexia in tumor-bearing mice[J]. Cancers (Basel), 2021, 13(24):6389. |
[10] |
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1):41-50.
doi: 10.1016/j.cmet.2016.05.005 pmid: 27320064 |
[11] | Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function[J]. Gut Microbes, 2023, 15(1):2172671. |
[12] |
Ferrell JM, Pathak P, Boehme S, et al. Deficiency of both farnesoid X receptor and takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice[J]. Hepatology, 2019, 70(3):955-970.
doi: 10.1002/hep.30513 pmid: 30664797 |
[13] | Jones BV, Begley M, Hill C, et al. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome[J]. Proc Natl Acad Sci U S A, 2008, 105(36):13580-13585. |
[14] |
Song Z, Cai Y, Lao X, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome[J]. Microbiome, 2019, 7(1):9.
doi: 10.1186/s40168-019-0628-3 pmid: 30674356 |
[15] | Funabashi M, Grove TL, Wang M, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J]. Nature, 2020, 582(7813):566-570. |
[16] |
Zheng X, Chen T, Jiang R, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism[J]. Cell Metab, 2021, 33(4):791-803.
doi: 10.1016/j.cmet.2020.11.017 pmid: 33338411 |
[17] | Doden HL, Wolf PG, Gaskins HR, et al. Completion of the gut microbial epi-bile acid pathway[J]. Gut Microbes, 2021, 13(1):1-20. |
[18] | Doden HL, Ridlon JM. Microbial hydroxysteroid dehydrogenases[J]. Microorganisms, 2021, 9(3):469. |
[19] | Hertel J, Harms AC, Heinken A, et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on sulfur metabolism in Parkinson’s disease[J]. Cell Rep, 2019, 29(7):1767-1777. |
[20] |
Alnouti Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification[J]. Toxicol Sci, 2009, 108(2):225-246.
doi: 10.1093/toxsci/kfn268 pmid: 19131563 |
[21] |
Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids[J]. J Lipid Res, 2015, 56(6):1085-1099.
doi: 10.1194/jlr.R054114 pmid: 25210150 |
[22] |
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis[J]. Cell Host Microbe, 2022, 30(3):289-300.
doi: 10.1016/j.chom.2022.02.004 pmid: 35271802 |
[23] | Collins SL, Stine JG, Bisanz JE, et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease[J]. Nat Rev Microbiol, 2023, 21(4):236-247. |
[24] | Sato Y, Atarashi K, Plichta DR, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians[J]. Nature, 2021, 599(7885):458-464. |
[25] |
Friedman E S, Li Y, Shen T-C D, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid[J]. Gastroenterology, 2018, 155(6): 1741-1752.
doi: S0016-5085(18)34887-X pmid: 30144429 |
[26] | He Z, Ma Y, Yang S, et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection[J]. Microbiome, 2022, 10(1): 79. |
[27] | Zhang S, Tun HM, Zhang D, et al. Alleviation of hepatic steatosis: dithizone-related gut microbiome restoration during Paneth cell dysfunction[J]. Front Microbiol, 2022, 13:813783. |
[28] |
Zhou D, Wang Q, Liu H. Coronavirus disease 2019 and the gut-lung axis[J]. Int J Infect Dis, 2021, 113:300-307.
doi: 10.1016/j.ijid.2021.09.013 pmid: 34517046 |
[29] |
Long X, Mu S, Zhang J, et al. GLOBAL signatures of the microbiome and metabolome during hospitalization of septic patients[J]. Shock, 2023, 59(5):716-724.
doi: 10.1097/SHK.0000000000002117 pmid: 36951975 |
[30] | Sun S, Wang D, Dong D, et al. Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis[J]. Crit Care, 2023, 27(1):127. |
[31] | Popli S, Badgujar PC, Agarwal T, et al. Persistent organic pollutants in foods, their interplay with gut microbiota and resultant toxicity[J]. Sci Total Environ, 2022, 832:155084. |
[32] |
Monaghan T, Mullish BH, Patterson J, et al. Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway[J]. Gut Microbes, 2019, 10(2):142-148.
doi: 10.1080/19490976.2018.1506667 pmid: 30183484 |
[33] | Monaghan TM, Duggal NA, Rosati E, et al. A multi-factorial observational study on sequential fecal microbiota transplant in patients with medically refractory clostridioides difficile infection[J]. Cells, 2021, 10(11):3234. |
[34] | Usui Y, Ayibieke A, Kamiichi Y, et al. Impact of deoxycholate on Clostridioides difficile growth, toxin production, and sporulation[J]. Heliyon, 2020, 6(4):e03717. |
[35] | Dubois T, Tremblay YDN, Hamiot A, et al. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile[J]. NPJ Biofilms Microbiomes, 2019, 5(1):14. |
[36] | Papazyan R, Ferdyan N, Srinivasan K, et al. Human fecal bile acid analysis after investigational microbiota-based live biotherapeutic delivery for recurrent clostridioides difficile infection[J]. Microorganisms, 2023, 11(1):135. |
[37] | Liu H, Kohmoto O, Sakaguchi A, et al. Taurocholic acid, a primary 12α-hydroxylated bile acid, induces leakiness in the distal small intestine in rats[J]. Food Chem Toxicol, 2022, 165:113136. |
[38] |
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer[J]. Gut Microbes, 2016, 7(3):201-215.
doi: 10.1080/19490976.2016.1150414 pmid: 27003186 |
[39] |
Horvatits T, Drolz A, Rutter K, et al. Circulating bile acids predict outcome in critically ill patients[J]. Ann Intensive Care, 2017, 7(1):48.
doi: 10.1186/s13613-017-0272-7 pmid: 28466463 |
[40] |
Robinson JI, Weir WH, Crowley JR, et al. Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections[J]. J Clin Invest, 2019, 129(9):3792-3806.
doi: 10.1172/JCI126905 pmid: 31403473 |
[41] | Mullish BH, McDonald JAK, Pechlivanis A, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection[J]. Gut, 2019, 68(10):1791-1800. |
[42] |
Alavi S, Mitchell JD, Cho JY, et al. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection[J]. Cell, 2020, 181(7):1533-1546.
doi: S0092-8674(20)30631-0 pmid: 32631492 |
[43] |
Paramsothy S, Nielsen S, Kamm MA, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis[J]. Gastroenterology, 2019, 156(5):1440-1454.
doi: S0016-5085(18)35387-3 pmid: 30529583 |
[44] | Lou X, Xue J, Shao R, et al. Fecal microbiota transplantation and short-chain fatty acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances[J]. Front Immunol, 2023, 13:1063543. |
[45] |
Kazemian N, Ramezankhani M, Sehgal A, et al. The trans-kingdom battle between donor and recipient gut microbiome influences fecal microbiota transplantation outcome[J]. Sci Rep, 2020, 10(1):18349.
doi: 10.1038/s41598-020-75162-x pmid: 33110112 |
[46] | Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile[J]. Nature, 2015, 517(7533):205-208. |
[47] | Zhou C, Wang Y, Li C, et al. Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids[J]. Microbiol Spectr, 2023, 11(2):e0333022. |
[48] | Rao SC, Athalye-Jape GK, Deshpande GC, et al. Probiotic supplementation and late-onset sepsis in preterm infants[J]. Pediatrics, 2016, 137(3):e20153684. |
[49] | Chen L, Li H, Chen Y, et al. Probiotic Lactobacillus rhamnosus GG reduces mortality of septic mice by modulating gut microbiota composition and metabolic profiles[J]. Nutrition, 2020, 78:110863. |
[50] |
Haring E, Uhl FM, Andrieux G, et al. Bile acids regulate intestinal antigen presentation and reduce graft-versus-host disease without impairing the graft-versus-leukemia effect[J]. Haematologica, 2021, 106(8):2131-2146.
doi: 10.3324/haematol.2019.242990 pmid: 32675222 |
[51] | Brevini T, Maes M, Webb GJ, et al. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2[J]. Nature, 2023, 615(7950):134-142. |
[52] | Gupta S, Arora A, Saini V, et al. Hydrophobicity of cholic acid-derived amphiphiles dictates the antimicrobial specificity[J]. ACS Biomater Sci Eng, 2022, 8(11):4996-5007. |
[1] | 郑鸿鲲, 单圣周, 季向阳, 等.
病理性瘢痕的多组学方法研究进展
[J]. 组织工程与重建外科杂志, 2024, 20(3): 362-. |
[2] | 陈潇1,2,张瑞1,2,汤心溢1,2,钱娟3. 交叉特征深度编码网络预测儿童脓毒症[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 131-140. |
[3] | 刘菂, 瞿洪平, 徐志红, 曹久妹, 郑岚, 白婷婷. 参附注射液对老年脓毒症患者免疫功能的影响[J]. 内科理论与实践, 2024, 19(03): 153-158. |
[4] | 朱晓雯, 王鸿超, 吴文君. 肠道菌群介导阻塞性睡眠呼吸暂停患者代谢及心血管异常的作用及相关机制进展[J]. 内科理论与实践, 2024, 19(02): 130-135. |
[5] | 黄仙娜, 陈云册, 周敏, 倪磊. 糖尿病患者合并新型冠状病毒感染的研究进展[J]. 内科理论与实践, 2024, 19(01): 77-81. |
[6] | 杨航, 戴菁, 王学锋. 脓毒症诊治中Ang/Tie信号通路的研究进展[J]. 诊断学理论与实践, 2024, 23(01): 90-95. |
[7] | 郑晓燕, 孙璘, 汤葳. 奥马珠单抗对过敏性哮喘患者血清细胞因子谱的影响[J]. 内科理论与实践, 2023, 18(06): 388-393. |
[8] | 乔敏捷, 周巍, 陈怡. 血清高速泳动族蛋白B1在评估脓毒症患者预后中的作用[J]. 内科理论与实践, 2023, 18(02): 70-75. |
[9] | 潘柔百, 宗枭, 陶蓉. 益生菌对心室重构的影响[J]. 内科理论与实践, 2023, 18(02): 131-134. |
[10] | 蒋兆彦, 沈惟一, 胡海. 肠道因素对胆石病防治的作用[J]. 外科理论与实践, 2023, 28(02): 91-93. |
[11] | 段中华, 王宇华, 郭斯敏. 牙周病在非酒精性脂肪性肝病中的作用及机制研究进展[J]. 内科理论与实践, 2023, 18(02): 107-110. |
[12] | 周易, 陈影, 陈尔真. 甲状腺激素对脓毒症脏器功能维护作用的研究进展[J]. 内科理论与实践, 2022, 17(05): 408-412. |
[13] | 郑毓真, 郑彦俊, 周易, 祁星, 陈薇薇, 史雯, 周伟君, 杨之涛, 陈影, 毛恩强, 陈尔真. 综合性医院674例脓毒症住院患者的回顾性临床分析[J]. 内科理论与实践, 2022, 17(04): 278-282. |
[14] | 周思锋, 徐海舒, 范欣生. 基于不同生物样本代谢组学的OSAHS生物标志物研究进展[J]. 诊断学理论与实践, 2022, 21(04): 535-540. |
[15] | 陈敏, 车在前, 陈影, 马丽, 赵冰, 周伟君, 毛恩强, 陈尔真. 白细胞血小板比值早期评估脓毒症预后的临床研究[J]. 内科理论与实践, 2022, 17(03): 208-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||