内科理论与实践 ›› 2025, Vol. 20 ›› Issue (03): 224-231.doi: 10.16138/j.1673-6087.2025.03.07
收稿日期:
2024-08-05
出版日期:
2025-06-28
发布日期:
2025-09-01
通讯作者:
史冬梅
E-mail:sdm2050@hotmail.com
HUANG Lei1a, ZHANG Chenli1a,1b, YAN Hua1a, SHI Dongmei2()
Received:
2024-08-05
Online:
2025-06-28
Published:
2025-09-01
Contact:
SHI Dongmei
E-mail:sdm2050@hotmail.com
摘要:
目的:研究生物钟调控与非酒精脂肪性肝病脂质代谢的关键分子机制及其对脂质代谢的影响,为非酒精性脂肪性肝病防治提供一定的依据。 方法:方法:建立高脂饮食+生物钟紊乱(high fat diet + circadian rhythm disturbance, HFC)组、普通饮食+生物钟紊乱(normal chow diet + circadian rhythm disturbance, NC)组、高脂饮食(high fat diet, HF)组、普通饮食(normal chow diet, N)组4组非酒精性脂肪性肝病小鼠模型。采用油红O以及苏木精-伊红染色(hematoxylin and eosin staining,HE)法检测肝脏脂肪沉积情况;采用酶联免疫吸附分析(enzyme-linked immunosorbent assay,ELISA)检测小鼠血清中血脂水平;应用免疫印迹法检测脑和肌肉芳香烃受体核转位样蛋白1(brain and muscle arnt-like 1, BMAL1)基因表达水平,及其与肝脏病理特征的相关性。对HFC组以及HF组采用mRNA生物信息分析技术获取非酒精性脂肪性肝病关键生物钟基因。 结果:生物钟紊乱可导致小鼠体重增加并诱发肥胖,至第15周,HFC组体重超过HF组(t=23.18,P<0.000 1),NC组体重高于N组(t=5.24,P<0.000 1)。生物钟紊乱同时促进肝脏脂质沉积,HFC组随时间延长,肝脏脂肪含量逐渐增多(F=10.13,P<0.05);NC组脂肪含量亦随时间增加(F=8.89,P<0.05)。生物钟紊乱加剧脂质代谢异常,HFC组小鼠总胆固醇(total cholesterol, TC)以及低密度脂蛋白胆固醇(low density lipoprotein-cholesterol, LDL-C)在ZT0、8、16时均显著高于HF组(F=23.3,P<0.000 1;F=68.1,P<0.000 1);NC组小鼠TC和LDL-C在ZT0、8、16时均高于N组(F=3.9,P<0.000 1;F=5.8,P<0.000 1)。BMAL1的表达呈节律性波动,HFC组和NC组BMAL1蛋白表达在ZT16时较ZT8时更高,与其脂肪肝的严重程度呈正相关(r=0.995,P=0.022)。 结论:高脂饮食破坏小鼠脂质代谢稳态,而生物钟节律紊乱加重代谢异常程度,增加肝脏脂质沉积,加速脂肪肝进展。生物钟基因BMAL1与非酒精性脂肪性肝病的代谢密切相关。
中图分类号:
黄磊, 张晨莉, 阎骅, 史冬梅. 生物钟紊乱与非酒精性脂肪性肝病病理特征的相关性研究[J]. 内科理论与实践, 2025, 20(03): 224-231.
HUANG Lei, ZHANG Chenli, YAN Hua, SHI Dongmei. Correlation study on circadian rhythm disturbance and pathological characteristics of non-alcoholic fatty liver disease[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(03): 224-231.
表3
4组小鼠血清中血脂浓度分析(均n=3,$\bar{x}±s$, μmol/L)
血脂 | ZT0 | ZT8 | ZT16 | F | P | |
---|---|---|---|---|---|---|
TC | 66.3 | <0.000 1 | ||||
N组 | 232.5±14.4 | 212.7±9.7 | 220.7±4.7 | |||
NC组 | 263.3±7.5 | 251.0±27.0 | 261.1±31.8 | |||
HF组 | 351.0±9.91) | 355.8±8.41) | 332.0±17.71) | |||
HFC组 | 447.8±26.32) | 428.1±22.02) | 445.6±22.22) | |||
TG | 79.5 | <0.000 1 | ||||
N组 | 270.5±23.9 | 273.8±10.9 | 276.0±10.3 | |||
NC组 | 278.3±25.3 | 244.6±11.6 | 261.3±7.6 | |||
HF组 | 420.4±18.51) | 474.0±6.31) | 339.8±13.71) | |||
HFC组 | 449.5±33.22) | 487.5±13.32) | 330.1±15.72) | |||
LDL-C | 2313.0 | <0.000 1 | ||||
N组 | 224.3±11.5 | 227.9±15.8 | 240.8±23.5 | |||
NC组 | 256.1±29.0 | 273.5±10.8 | 287.7±10.5 | |||
HF组 | 6 239.7±64.41) | 6 058.6±81.71) | 71 26.4±302.21) | |||
HFC组 | 7 193.4±211.12) | 6 635.0±122.42) | 8 422.1±177.92) | |||
HDL-C | 454.0 | <0.000 1 | ||||
N组 | 218.3±11.5 | 226.7±7.0 | 229.6±11.2 | |||
NC组 | 201.7±19.7 | 232.5±18.4 | 219.0±16.9 | |||
HF组 | 2 461.0±156.21) | 2 484.7±82.51) | 2 289.1±79.21) | |||
HFC组 | 2 528.0±204.32) | 2 492.9±96.42) | 2 417.7±131.92) |
表5
HF组与HFC组不同时间点生物钟相关基因表达谱
基因 | ZT0 | ZT8 | ZT16 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HF组 | HFC组 | HF组 | HFC组 | HF组 | HFC组 | ||||||
BMAL1 | 592 | 862 | 487 | 364 | 352 | 953 | |||||
BMAL2 | 10 | 25 | 38 | 32 | 28 | 29 | |||||
CLOCK | 2 007 | 2 918 | 2 526 | 2 327 | 2 233 | 2 468 | |||||
PER1 | 418 | 750 | 153 | 409 | 237 | 515 | |||||
PER2 | 848 | 834 | 345 | 949 | 545 | 843 | |||||
PER3 | 328 | 214 | 297 | 1 109 | 578 | 251 | |||||
NPAS2 | 44 | 147 | 144 | 65 | 73 | 305 | |||||
CRY1 | 843 | 1 053 | 289 | 374 | 294 | 1 174 | |||||
CRY2 | 698 | 795 | 733 | 1 199 | 894 | 871 |
表6
qPCR检测生物钟基因的相对表达(均n=3, $\bar{x}±s$)
基因 | ZT0 | ZT8 | ZT16 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HF组 | HFC组 | HF组 | HFC组 | HF组 | HFC组 | ||||||
BMAL1 | 3.24±0.05 | 3.73±0.13 | 2.16±0.77 | 1.39±1.11 | 1.63±1.06 | 4.07±0.22 | |||||
BMAL2 | 0.06±0.03 | 0.11±0.01 | 0.18±0.04 | 0.13±0.06 | 0.13±0.03 | 0.14±0.09 | |||||
CLOCK | 4.20±0.43 | 4.70±0.52 | 4.24±0.92 | 3.31±1.41 | 3.87±1.25 | 3.40±0.87 | |||||
PER1 | 2.34±0.66 | 2.70±0.90 | 0.74±0.21 | 1.42±0.72 | 1.08±0.31 | 2.29±0.51 | |||||
PER2 | 6.66±1.41 | 4.35±1.79 | 2.28±0.92 | 4.48±2.64 | 3.35±1.24 | 5.20±0.61 | |||||
PER3 | 1.21±0.17 | 0.63±0.28 | 0.95±0.74 | 2.39±1.83 | 1.57±1.62 | 0.72±0.08 | |||||
NPAS2 | 0.41±0.03 | 1.38±0.32 | 1.07±0.71 | 0.44±0.58 | 0.58±0.43 | 2.26±0.50 | |||||
CRY1 | 9.51±1.12 | 8.51±0.80 | 2.60±0.79 | 2.77±1.01 | 2.78±1.17 | 10.29±1.44 | |||||
CRY2 | 4.70±0.27 | 4.24±0.47 | 4.12±0.46 | 5.12±1.00 | 4.73±1.18 | 4.59±0.38 |
[1] |
Bolshette N, Ibrahim H, Reinke H, et al. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(11):695-707.
doi: 10.1038/s41575-023-00792-1 pmid: 37291279 |
[2] |
Berk PD. Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome[J]. Hepatology, 2008, 48(5):1362-1376.
doi: 10.1002/hep.22632 pmid: 18972439 |
[3] |
Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver[J]. Compr Physiol, 2017, 8(1):1-8.
doi: 10.1002/cphy.c170012 pmid: 29357123 |
[4] |
Sheka AC, Adeyi O, Thompson J, et al. Nonalcoholic steatohepatitis: a review[J]. JAMA, 2020, 323(12):1175-1183.
doi: 10.1001/jama.2020.2298 pmid: 32207804 |
[5] |
Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge[J]. Physiol Rev, 2013, 93(1):107-135.
doi: 10.1152/physrev.00016.2012 pmid: 23303907 |
[6] |
McDearmon EL, Patel KN, Ko CH, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice[J]. Science, 2006, 314(5803):1304-1308.
doi: 10.1126/science.1132430 pmid: 17124323 |
[7] | Pan X, Mota S, Zhang B. Circadian clock regulation on lipid metabolism and metabolic diseases[J]. Adv Exp Med Biol, 2020,1276:53-66. |
[8] |
Landgraf D, Neumann AM, Oster H. Circadian clock-gastrointestinal peptide interaction in peripheral tissues and the brain[J]. Best Pract Res Clin Endocrinol Metab, 2017, 31(6):561-571.
doi: S1521-690X(17)30105-7 pmid: 29224668 |
[9] | Ando H, Takamura T, Matsuzawa-Nagata N, et al. The hepatic circadian clock is preserved in a lipid-induced mouse model of non-alcoholic steatohepatitis[J]. Biochem Biophys Res Commun, 2009, 380(3):684-688. |
[10] |
Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice[J]. Cell Metab, 2007, 6(5):414-421.
doi: 10.1016/j.cmet.2007.09.006 pmid: 17983587 |
[11] | Perez-Diaz-Del-Campo N, Castelnuovo G, Caviglia GP, et al. Role of circadian clock on the pathogenesis and lifestyle management in non-alcoholic fatty liver disease[J]. Nutrients, 2022, 14(23):5053. |
[12] | Shostak A, Brunner M. Help from my friends-cooperation of BMAL1 with noncircadian transcription factors[J]. Genes Dev, 2019, 33(5-6):255-257. |
[13] |
Landgraf D, Neumann AM, Oster H. Circadian clock-gastrointestinal peptide interaction in peripheral tissues and the brain[J]. Best Pract Res Clin Endocrinol Metab, 2017, 31(6):561-571.
doi: S1521-690X(17)30105-7 pmid: 29224668 |
[14] | Yamaguchi M, Uemura H, Arisawa K, et al. Association between brain-muscle-ARNT-like protein-2 (BMAL2) gene polymorphism and type 2 diabetes mellitus in obese Japanese individuals: a cross-sectional analysis of the Japan multi-institutional collaborative cohort study[J]. Diabetes Res Clin Pract, 2015, 110(3):301-308. |
[15] |
Garaulet M, Lee YC, Shen J, et al. Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors in overweight subjects (GOLDN population)[J]. Eur J Hum Genet, 2010, 18(3):364-369.
doi: 10.1038/ejhg.2009.176 pmid: 19888304 |
[16] |
Fan Z, Zhao M, Joshi PD, et al. A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation[J]. Nucleic Acids Res, 2017, 45(10):5720-5738.
doi: 10.1093/nar/gkx156 pmid: 28335007 |
[17] |
Ray S, Valekunja UK, Stangherlin A, et al. Circadian rhythms in the absence of the clock gene Bmal1[J]. Science, 2020, 367(6479):800-806.
doi: 10.1126/science.aaw7365 pmid: 32054765 |
[1] | 段中华, 马雪莹, 吴玉琼, 舒家恩, 吴沛, 郭斯敏, 王宇华. 牙周治疗改善非酒精性脂肪性肝病的探索性研究[J]. 内科理论与实践, 2024, 19(03): 167-173. |
[2] | 沈赟, 徐一娇, 韦晓, 张瑞祥, 刘超. PCSK9抑制剂治疗非酒精性脂肪性肝病研究进展[J]. 内科理论与实践, 2024, 19(02): 136-139. |
[3] | 段中华, 王宇华, 郭斯敏. 牙周病在非酒精性脂肪性肝病中的作用及机制研究进展[J]. 内科理论与实践, 2023, 18(02): 107-110. |
[4] | 秦雪, 郭华, 张云云, 崔小川. C1q肿瘤坏死因子相关蛋白3与代谢相关疾病的研究进展[J]. 内科理论与实践, 2022, 17(06): 482-485. |
[5] | 李少博, 杨迪, 韩峻峰. 身体成分变化与非酒精性脂肪性肝病的相关研究进展[J]. 诊断学理论与实践, 2021, 20(01): 104-108. |
[6] | 石云, 方云芬, 代华杰, 陈晓鸥, 谭利民, 汤明明, 唐志军, 朱雯, 邓婵娟, 禤立平, 王天歌, 徐敏, 毕宇芳, 王卫庆, 张寅飞,. 尿液pH值和非酒精性脂肪性肝病的相关性研究[J]. 内科理论与实践, 2019, 14(06): 337-341. |
[7] | 朱雯, 邓婵娟, 代华杰, 禤立平, 李勉, 陈宇红, 张寅飞, 王卫庆, 毕宇芳, 徐敏, 郑昇,. 胰岛素抵抗指数与非酒精性脂肪性肝病肝纤维化进展程度的相关性研究[J]. 内科理论与实践, 2019, 14(06): 342-348. |
[8] | 陈超波, 蒋兆彦. 胆汁酸代谢与非酒精性脂肪性肝病[J]. 外科理论与实践, 2019, 24(04): 371-374. |
[9] | 肖永胜, 周俭. 非酒精性脂肪性肝病与肝细胞癌[J]. 外科理论与实践, 2018, 23(03): 210-213. |
[10] | 朱翠玲, 钱春花, 张怡, 高晶扬, 尤慧, 卢列盛, 董恒生, 周东雷, 曲伸,. 代谢性手术治疗重度肥胖伴非酒精性脂肪性肝病患者的疗效观察[J]. 内科理论与实践, 2017, 12(04): 256-261. |
[11] | 李小英, 焦阳,. 浅谈脂肪肝治疗[J]. 内科理论与实践, 2017, 12(04): 230-235. |
[12] | 郭传勇, 李静静,. 脂肪肝的治疗药物进展[J]. 内科理论与实践, 2017, 12(04): 236-239. |
[13] | 马俊永, 张小峰, 施乐华,. 肥胖与肝癌关系及机制的研究进展[J]. 外科理论与实践, 2016, 21(05): 454-457. |
[14] | 苏青,. 糖代谢异常人群筛查非酒精性脂肪性肝病的重要性[J]. 诊断学理论与实践, 2016, 15(04): 342-345. |
[15] | 陈一铭, 沈峰, 范建高,. 细胞角蛋白18在非酒精性脂肪性肝病无创评估中的作用[J]. 诊断学理论与实践, 2014, 13(02): 121-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||