诊断学理论与实践 ›› 2025, Vol. 24 ›› Issue (03): 301-311.doi: 10.16150/j.1671-2870.2025.03.009
收稿日期:
2025-01-03
接受日期:
2025-03-25
出版日期:
2025-06-25
发布日期:
2025-06-25
通讯作者:
林茂松 E-mail:lms0605@163.com基金资助:
DU Yajie, WANG Mingfei, LIN Maosong()
Received:
2025-01-03
Accepted:
2025-03-25
Published:
2025-06-25
Online:
2025-06-25
摘要:
目的:研究N6-甲基化腺嘌呤(N6-methyladenosine,m6A)甲基化转移酶KIAA1429在结直肠癌(colorectal cancer,CRC)中对程序性细胞死亡配体1(programmed deathligand-1,PD-L1)表达及CD8+ T细胞浸润的影响。方法:利用在线数据库分析KIAA1429在CRC中的表达对PD-L1表达、CD8+T细胞浸润的影响。收集2020年至2022年南京医科大学附属泰州人民医院连续收治的经病理确诊的CRC患者的癌组织样本及癌旁组织样本,采用免疫组织化学染色法检测,并比较其中KIAA1429、PD-L1水平及CD8+ T细胞浸润情况。在CRC细胞株中,采用定量聚合酶链反应(quantitative polymerase chain reaction,qPCR)及蛋白印迹法分别检测敲减KIAA1429基因后CRC细胞中的PD-L1 mRNA及蛋白表达水平。在CRC同源移植瘤小鼠中敲减KIAA1429基因后,每3 d记录一次肿瘤大小及小鼠体重,利用流式细胞术检测瘤组织中CD8+T细胞浸润水平变化。结果:生物信息分析表明,KIAA1429在CRC中高表达(P<0.05),且与不良预后相关(P=0.028),并与CD8+ T细胞浸润程度呈负相关(P=3.981×10-2)。病理组织免疫组化结果显示,CRC中KIAA1429的表达水平显著高于癌旁组织(P=2.196×10-7),且KIAA1429与PD-L1的表达水平呈正相关(P=1.017×10-7),与CD8+T细胞的浸润程度呈负相关(P=0.021)。在CRC细胞中敲减KIAA1429基因,能够下调PD-L1的mRNA及蛋白表达(P<0.01)。在CRC移植瘤小鼠中敲减KIAA1429基因可以抑制肿瘤生长(P<0.01),提高CD8+T细胞浸润水平(P<0.05)。结论:m6A甲基化转移酶KIAA1429可能通过上调PD-L1表达和减少CD8+ T免疫细胞浸润,从而抑制CRC肿瘤免疫。靶向KIAA1429可能有助于改善CRC患者预后,提高CRC免疫治疗疗效。
中图分类号:
杜雅洁, 王铭飞, 林茂松. 结直肠癌中KIAA1429通过上调PD-L1及下调CD8+ T细胞组织浸润而抑制抗肿瘤免疫的研究[J]. 诊断学理论与实践, 2025, 24(03): 301-311.
DU Yajie, WANG Mingfei, LIN Maosong. KIAA1429 inhibits colorectal cancer tumor immunity by regulating PD-L1 and CD8+ T cell[J]. Journal of Diagnostics Concepts & Practice, 2025, 24(03): 301-311.
表1
siRNA序列
Primer | Sense (5’ to 3’) | Antisence (5’ to 3’) |
---|---|---|
siKIAA1429-1 | CCCAACGAUGGCACGAAUUACdTdT | GTAAUUCGUGCCAUCGUUGGGdTdT |
siKIAA1429-2 | CGCUGAGCAAAGUUCUCAUAUdTdT | AUAUGAGAACUUUGCUCAGCGdTdT |
siKIAA1429-3 | UACGCUCCUUUACACGAUAAAdTdT | UUUAUCGUGUAAAGGAGCGUAdTdT |
si-NC | AUGAGAUAAGCUUAAGAUCGCdTdT | GCGAUCUUAAGCUUAUCUCAUdTdT |
[1] | FILHO A M, LAVERSANNE M, FERLAY J, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer,2025, 156(7):1336-1346. |
[2] | 肖毅, 李珂璇. 多中心直肠癌真实世界数据库建设与数据质量控制策略[J]. 中华消化外科杂志 2025, 24(1): 77-81. |
XIAO Y, LI K X. Multicenter rectal cancer real-world database construction and data quality control strategies[J]. Chin J Dig Surg, 2025, 24(1):77-81. | |
[3] | 李珂璇, 肖体先, 汪晓东, 等. 中低位直肠癌初诊及新辅助治疗后评估完成度分析:全国多中心真实世界研究[J]. 中华消化外科杂志, 2025, 24(1):113-119. |
LI K X, XIAO T X, WANG X D, et al. Analysis of completion rate of tumor evaluation at initial assessment and after neoa-djuvant therapy for mid and low rectal cancer : a national multicenter real world study[J]. Chin J Dig Surg, 2025, 24(1):113-119. | |
[4] | 中华医学会外科学分会腹腔镜与内镜外科学组, 中华医学会外科学分会结直肠外科学组, 中国医师协会外科医师分会结直肠外科专家工作组, 等. 腹腔镜结直肠癌根治术操作指南(2023版)[J]. 中华消化外科杂志, 2024, 23(1):10-22. |
Laparoscopic & Endoscopic Surgery Group, Branch of Surgery, Chinese Medical Association, Colorectal Surgery Group, Branch of Surgery, Chinese Medical Association, Chinese Society of Colon and Rectal Surgeons, Chinese Medical Doctor Association, et al. Guideline for operative procedure of laparoscopic radical surgery for colorectal cancer (2023 edition)[J]. Chin J Dig Surg, 2024, 23(1): 10-22. | |
[5] | MORGAN E, ARNOLD M, GINI A, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and morta-lity estimates from GLOBOCAN[J]. Gut, 2023, 72(2): 338-344. |
[6] |
LAZAROFF J, BOLOTIN D. Targeted therapy and immunotherapy in melanoma[J]. Dermatol Clin, 2023, 41(1):65-77.
doi: 10.1016/j.det.2022.07.007 pmid: 36410984 |
[7] | DANTOING E, PITON N, SALAÜN M, et al. Anti-PD1/PD-L1 immunotherapy for non-small cell lung cancer with actionable oncogenic driver mutations[J]. Int J Mol Sci, 2021, 22(12):6288. |
[8] |
JIN M, FANG J, PENG J, et al. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies[J]. Mol Cancer, 2024, 23(1):266.
doi: 10.1186/s12943-024-02176-8 pmid: 39614285 |
[9] |
MARCUS L, LEMERY S J, KEEGAN P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13):3753-3758.
doi: 10.1158/1078-0432.CCR-18-4070 pmid: 30787022 |
[10] |
DIAZ L A JR, SHIU K K, KIM T W, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2022, 23(5):659-670.
doi: 10.1016/S1470-2045(22)00197-8 pmid: 35427471 |
[11] | SUN T, WU R, MING L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019,112:108613. |
[12] | JIANG X, LIU B, NIE Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1):74. |
[13] | SHRIWAS O, MOHAPATRA P, MOHANTY S, et al. The impact of m6A RNA modification in therapy resistance of cancer: implication in chemotherapy, radiotherapy, and immunotherapy[J]. Front Oncol, 2021,10:612337. |
[14] | ZHANG Z, ZHANG C, LUO Y, et al. m6A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer[J]. BMC Med, 2021, 19(1):284. |
[15] | ZHANG X, LI M J, XIA L, et al. The biological function of m6A methyltransferase KIAA1429 and its role in human disease[J]. PeerJ, 2022,10:e14334. |
[16] | TANG Z, KANG B, LI C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis[J]. Nucleic Acids Res, 2019, 47(W1):W556-W560. |
[17] | LI T, FU J, ZENG Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1):W509-W514. |
[18] |
CERAMI E, GAO J, DOGRUSOZ U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5):401-404.
doi: 10.1158/2159-8290.CD-12-0095 pmid: 22588877 |
[19] | ZHOU Y, ZENG P, LI Y H, et al. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features[J]. Nucleic Acids Res, 2016, 44(10):e91. |
[20] | RASKOV H, ORHAN A, CHRISTENSEN J P, et al. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy[J]. Br J Cancer, 2021, 124(2):359-367. |
[21] | DI PILATO M, GAO Y, SUN Y, et al. Translational studies using the MALT1 Inhibitor (S)-mepazine to induce treg fragility and potentiate immune checkpoint therapy in cancer[J]. J Immunother Precis Oncol, 2023, 6(2):61-73. |
[22] | ZHOU Y, PEI Z, MAIMAITI A, et al. m6A methyltransfe-rase KIAA1429 acts as an oncogenic factor in colorectal cancer by regulating SIRT1 in an m6A-dependent manner[J]. Cell Death Discov, 2022, 8(1):83. |
[23] | AI Y, LIU S, LUO H, et al. METTL3 intensifies the progress of oral squamous cell carcinoma via modulating the m6A amount of PRMT5 and PD-L1[J]. J Immunol Res, 2021,2021:6149558. |
[24] | LIU Z, WANG T, SHE Y, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubi-quitination of PD-L1 in non-small cell lung cancer[J]. Mol Cancer, 2021, 20(1):105. |
[25] | MA L, LIN Y, SUN S W, et al. KIAA1429 is a potential prognostic marker in colorectal cancer by promoting the proliferation via downregulating WEE1 expression in an m6A-independent manner[J]. Oncogene, 2022, 41(5):692-703. |
[26] | QIAN J Y, GAO J, SUN X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner[J]. Oncogene, 2019, 38(33):6123-6141. |
[27] | WAN W, AO X, CHEN Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer[J]. Mol Cancer, 2022, 21(1):60. |
[28] | HU Y, ZHAO J, SHEN Y, et al. Predictive value of tumor-infiltrating lymphocytes detected by flow cytometry in colorectal cancer[J]. Int Immunopharmacol, 2022, 113(Pt A):109286. |
[29] | MALKA D, LIÈVRE A, ANDRÉ T, et al. Immune scores in colorectal cancer: Where are we?[J] Eur J Cancer, 2020,140:105-118. |
[30] | KARJULA T, ELOMAA H, NISKAKANGAS A, et al. CD3+ and CD8+ T-cell-based immune cell score and PD-(L)1 expression in pulmonary metastases of microsatellite stable colorectal cancer[J]. Cancers (Basel), 2022, 15(1):206. |
[31] | DOMINGO E, KELLY C, HAY J, et al. Prognostic and predictive value of immunoscore in stage Ⅲ colorectal cancer: pooled analysis of cases from the SCOT and IDEA-HORG studies[J]. J Clin Oncol, 2024, 42(18):2207-2218. |
[32] | HUANG Y, XIA W, DONG Z, et al. Chemical inhibitors targeting the oncogenic m6A modifying proteins[J]. Acc Chem Res, 2023, 56(21):3010-3022. |
[33] | CHEN H, PAN Y, ZHOU Q, et al. METTL3 inhibits antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer[J]. Gastroentero-logy, 2022, 163(4):891-907. |
[1] | 安慧慧, 吴涛, 刘文慧, 田思锐. 91种炎症蛋白水平与急性髓系白血病发病风险相关的孟德尔随机化研究[J]. 诊断学理论与实践, 2024, 23(05): 509-516. |
[2] | 秦晓丹, 孙慧玲, 潘蓓, 潘玉琴, 王书奎. miR-1229-3p抑制结直肠癌疾病进展及作为潜在生物标志物的研究[J]. 诊断学理论与实践, 2023, 22(05): 429-440. |
[3] | 李佳曦, 汪锦江, 俞立萍, 袁英, 乔光磊, 马俐君. RAB25沉默抑制结直肠癌细胞铁死亡的作用研究[J]. 诊断学理论与实践, 2022, 21(06): 710-718. |
[4] | 张天羽, 周东, 洪桢. 《儿童抗NMDAR脑炎治疗的国际共识推荐》解读[J]. 诊断学理论与实践, 2022, 21(06): 677-683. |
[5] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
[6] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[7] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[8] | 周艺, 杨莉. 粒细胞-巨噬细胞集落刺激因子在肿瘤免疫治疗中的作用机制及临床应用进展[J]. 诊断学理论与实践, 2021, 20(04): 407-413. |
[9] | 罗清琼, 陈福祥. 肿瘤免疫治疗策略的转变及相关标志物研究现状[J]. 诊断学理论与实践, 2019, 18(04): 387-393. |
[10] | 王晓斐, 高蓓莉. 肺癌免疫治疗标志物研究进展认识[J]. 诊断学理论与实践, 2018, 17(05): 494-498. |
[11] | 娄加陶, 张宸梓. 外泌体的检测及临床应用[J]. 诊断学理论与实践, 2018, 17(02): 141-146. |
[12] | 汪莉, 梁智勇,. 结肠直肠癌RAS及BRAF基因突变检测的意义[J]. 诊断学理论与实践, 2013, 12(06): 587-590. |
[13] | 马韬, 叶正宝, 于颖彦, 计骏, 赵任, 刘炳亚, 燕敏, 朱正纲,. 胸苷酸合成酶mRNA和二氢嘧啶脱氢酶mRNA在结直肠癌中的表达及临床意义[J]. 诊断学理论与实践, 2006, 5(06): 526-529. |
[14] | 刘玉金,陈克敏,刘林祥. 结、直肠癌术前影像学分期研究进展[J]. 诊断学理论与实践, 2004, 3(03): 85-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||