诊断学理论与实践 ›› 2025, Vol. 24 ›› Issue (03): 312-319.doi: 10.16150/j.1671-2870.2025.03.010
郭语清1a, 王长燕2, 刘迎春1a, 庞芸1a, 朱霞1b, 葛睿1c, 李蔚萍1c, 张麒2, 陈林1a()
收稿日期:
2025-03-28
接受日期:
2025-06-05
出版日期:
2025-06-25
发布日期:
2025-06-25
通讯作者:
陈林 E-mail:hdchenlin@fudan.edu.cn基金资助:
GUO Yuqing1a, WANG Changyan2, LIU Yinchun1a, PANG Yun1a, ZHU Xia1b, GE Rui1c, LI Weiping1c, ZHANG Qi2, CHEN Lin1a()
Received:
2025-03-28
Accepted:
2025-06-05
Published:
2025-06-25
Online:
2025-06-25
摘要:
目的:建立基于乳腺三维超声视频的深度学习模型(deep learning model based on three-dimensional ultrasound videos,DL-3DUV),并探讨该模型辅助不同年资医师鉴别乳腺肿块良恶性的应用价值。方法:采用ResNet50模型作为骨干网,建立乳腺肿块良恶性的分类模型(DL-3DUV),回顾性纳入400例乳腺肿块患者(共525个病灶)的自动乳腺全容积成像(automated breast volume scanner,ABVS)动态视频,按8∶2的比例随机分为训练集和测试集,比较DL-3DUV与高年资医师、低年资医师独立或联合诊断的效能。结果:独立诊断时,DL-3DUV与高年资医师比较,灵敏度(83.33%比81.77%)、准确率(82.50% vs. 84.60%)和受试者操作特征曲线的曲线下面积(area under the curve,AUC)(0.83比0.85)相当(P均>0.05),仅特异度较低(81.58%比87.73%)(P<0.05);但DL-3DUV与低年资医师比较,灵敏度(83.33%比78.60%)、特异度(81.58%比57.00%)、准确率(82.50%比68.37%)和AUC(0.83比0.68)的差异均有统计学意义(P<0.05)。高年资医师联合DL-3DUV诊断的灵敏度和AUC高于高年资医师独立诊断(89.70%比81.77%;0.91比0.85,P均<0.05),而特异度和准确率的差异无统计学意义(91.23%比87.73%;89.17%比84.60%,P均>0.05);低年资医师联合DL-3DUV诊断的诊断效能高于低年资医师独立诊断,灵敏度(88.10%比78.60%)、特异度(82.47%比57.00%)、准确率(85.47%比68.37%)和AUC(0.85比0.68)的差异均有统计学意义(P均<0.05)。结论:DL-3DUV在鉴别乳腺肿块良恶性中具有重要价值,有望成为临床辅助超声医师,尤其是低年资医师的有用工具。
中图分类号:
郭语清, 王长燕, 刘迎春, 庞芸, 朱霞, 葛睿, 李蔚萍, 张麒, 陈林. 基于三维超声视频的深度学习模型辅助不同年资医师鉴别乳腺肿块良恶性的应用价值[J]. 诊断学理论与实践, 2025, 24(03): 312-319.
GUO Yuqing, WANG Changyan, LIU Yinchun, PANG Yun, ZHU Xia, GE Rui, LI Weiping, ZHANG Qi, CHEN Lin. Application value of a deep learning model based on 3D ultrasound videos in assisting radiologists of different experience levels to differentiate benign and malignant breast masses[J]. Journal of Diagnostics Concepts & Practice, 2025, 24(03): 312-319.
表1
不同方法独立诊断和联合诊断的效能比较
Diagnostic method | Sensitivity (%) | Specificity (%) | Accurcy (%) | AUC |
---|---|---|---|---|
DL-3DUV | 83.33(76.36, 95.30) | 81.58(73.09, 90.07) | 82.50(74.17, 90.83) | 0.83(0.73, 0.92) |
Senior radiologists | 81.77(73.31, 90.23) | 87.73(80.54, 94.92) | 84.60(75.95, 93.25) | 0.85(0.80, 0.90) |
Junior radiologists | 78.60(69.61, 87.59) | 57.00(46.15, 67.85) | 68.37(58.18, 78.56) | 0.68(0.61, 0.75) |
Senior radiologists+ DL-3DUV | 89.70(83.04, 96.31) | 91.23(85.03, 97.43) | 89.17(82.36, 95.98) | 0.91(0.87, 0.95) |
Junior radiologists+ DL-3DUV | 88.10(81.00, 95.20) | 82.47(74.14, 90.80) | 85.47(77.75, 93.19) | 0.85(0.80, 0.91) |
Comparison between radiologists and DL-3DUV | ||||
Senior radiologists vs. DL-3DUV(P) | 0.500 | 0.016 | 0.400 | 0.071 |
Junior radiologists vs. DL-3DUV(P) | 0.031 | <0.001 | <0.001 | <0.001 |
Senior radiologists vs. junior radiologists(P) | 0.125 | <0.001 | <0.001 | <0.001 |
Comparison between radiologists in combination with DL-3DUV and radiologists | ||||
Senior radiologists+ DL-3DUV vs. senior radiologists(P) | 0.001 | 0.125 | 0.118 | 0.001 |
Junior radiologists+ DL-3DUV vs. junior radiologists(P) | <0.001 | <0.001 | 0.012 | <0.001 |
Comparison between radiologists in combination with DL-3DUV and DL-3DUV | ||||
Senior radiologists+ DL-3DUV vs. DL-3DUV(P) | 0.004 | 0.001 | 0.824 | <0.001 |
Junior radiologists+ DL-3DUV vs. DL-3DUV(P) | 0.031 | >0.99 | 0.125 | 0.007 |
Comparison of different radiologists in combination with DL-3DUV | ||||
Senior radiologists+ DL-3DUV vs. junior radiologists+ DL- 3DUV(P) | 0.250 | 0.002 | 0.092 | 0.001 |
[1] | 邬昊, 吕青. 全球及中国乳腺癌的流行病学趋势及防控启示:2018-2022年《全球癌症统计报告》解读[J]. 中国普外基础与临床杂志, 2024, 31(7):796-802. |
WU H, LÜ Q. Epidemiological trends and implications of breast cancer prevention and control in China and the word: an interpretation of the global cancer statistics report 2018-2022[J]. Chin J Bases Clin Gen Surg, 2024, 31(7):796-802. | |
[2] | 刘迎春, 陈林, 庞芸, 等. 基于自动乳腺容积扫描、乳腺X线摄影及MRI的BI-RADS分类鉴别乳腺良恶性肿[J]. 中国医学影像技术, 2021, 37(3): 386-390. |
LIU Y C, CHEN L, PANG Y, et al. BI-RADS classification based on automated breast volume scanning, X-ray mammography and MRI for differentiation of benign and malignant breast masses[J]. Chin J Med Imag Technol, 2021, 37(3):386-390. | |
[3] | CHEN L, CHEN Y, DIAO X H, et al. Comparative study of automated breast 3D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses[J]. Ultrasound Med Biol, 2013, 39(10):1735-1742. |
[4] | 中国超声医学工程学会仪器工程开发专业委员会, 中国抗癌协会肿瘤影像专委会, 中华医学会超声医学分会浅表组织与血管学组. 自动乳腺容积超声技术专家共识(2022版)[J]. 中国超声医学杂志, 2022, 38(3):241-247. |
The Instrument Engineering Development Professional Committee of the Chinese Society of Ultrasonic Medical Engineering, the Tumor Imaging Special Committee of the Chinese Anti Cancer Association, the Superficial Tissue and Vascular Group of the Ultrasound Medicine Branch of the Chinese Medical Association. Expert consensus on automated breast ultrasound technology (2022 edition)[J]. Chin J Ultrasound Med, 2022, 38(3):241-247. | |
[5] |
BREM RF, TABAR L, DUFFY SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight study[J]. Radiology, 2015, 274(3):663-673.
doi: 10.1148/radiol.14132832 pmid: 25329763 |
[6] | VAN ZELST J C M, TAN T, PLATEL B, et al. Improved cancer detection in automated breast ultrasound by radio-logists using computer aided detection[J]. Eur J Radiol, 2017,89:54-59. |
[7] | WANG Q, CHEN H, LUO G, et al. Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound[J]. Eur Radiol, 2022, 32(10):7163-7172. |
[8] | WANG Y, CHOI E J, CHOI Y, et al. Breast cancer classification in automated breast ultrasound using multi-view convolutional neural network with transfer learning[J]. Ultrasound Med Biol, 2020, 46(5):1119-1132. |
[9] | XIANG H, HUANG Y S, LEE C H, et al. 3-D Res-CapsNet convolutional neural network on automated breast ultrasound tumor diagnosis[J]. Eur J Radiol, 2021,138:109608. |
[10] | ZHUANG Z, DING W, ZHUANG S, et al. Tumor classification in automated breast ultrasound (ABUS) based on a modified extracting feature network[J]. Comput Med Ima-ging Graph, 2021,90:101925. |
[11] | ZHOU Y, CHEN H, LI Y, et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images[J]. Med Image Anal, 2021,70:101918. |
[12] | RYAN J T, HAYGOOD T M, YAMAL J M, et al. The "memory effect" for repeated radiologic observations[J]. Am J Roentgenol, 2011, 197(6):W985-W991. |
[13] | D'ORSI C, MORRIS E, MENDELSON E. ACR BI-RADS Atlas: Breast Imaging Reporting and Data System[M]. American Collegeof Radiology, 2013. |
[14] | WANG A, WU Y, JI X, et al. Assessing and optimizing large language models on spondyloarthritis multi-choice question answering: protocol for enhancement and assessment[J]. JMIR Res Protoc, 2024,13:e57001. |
[15] |
XU X, BAO L, TAN Y, et al. 1000-case reader study of radiologists' performance in interpretation of automated breast volume scanner images with a computer-aided detection system[J]. Ultrasound Med Biol, 2018, 44(8):1694-1702.
doi: S0301-5629(18)30184-4 pmid: 29853222 |
[16] |
YANG S, GAO X, LIU L, et al. Performance and reading time of automated breast us with or without computer-aided detection[J]. Radiology, 2019, 292(3):540-549.
doi: 10.1148/radiol.2019181816 pmid: 31210612 |
[17] |
HE P, CUI L G, CHEN W, et al. Subcategorization of ultrasonographic BI-RADS category 4: assessment of diagnostic accuracy in diagnosing breast lesions and influence of clinical factors on positive predictive value[J]. Ultrasound Med Biol, 2019, 45(5):1253-1258.
doi: S0301-5629(18)30555-6 pmid: 30799123 |
[18] | 麦武平, 周美君, 胡叶, 等. AI超声辅助诊断系统在低年资医师诊断甲状腺结节良恶性中的应用[J]. 中国超声医学杂志, 2021, 37(3):248-251. |
MAI W P, ZHOU M J, HU Y, et al. The application of AI ultrasound-assisted diagnosis system in diagnosing benign and malignant thyroid nodules for junior sonographers[J]. Chin J Ultrasound Med, 2021, 37(3):248-251. | |
[19] | 刘迎春, 陈林, 庞芸, 等. 自动乳腺容积扫描冠状面特征联合超声BI-RADS诊断乳腺癌的价值[J]. 中国临床医学影像杂志, 2020, 31(11):788-792. |
LIU Y C, CHEN L, PANG Y, et al. Values of combined coronal view features of automated breast scanning with ultrasound BI-RADS for the diagnosis of breast cancer[J]. J China Clin Med Imag, 2020, 31(11):788-792. | |
[24] | YANG J Y, SHEN J, SHEN S P, et al. Construction and analysis of preoperative lymph node metastasis load model of breast cancer patients based on dual-mode ultrasound[J]. Chin J Gen Pract, 2024, 22(4):646-650. |
[25] | 张杰秋, 伍棋, 王舰梅, 等. 基于机器学习的病理组学特征可预测乳腺癌患者对新辅助化疗的反应[J]. 重庆医科大学学报, 2023, 48(12):1483-1488. |
ZHANG J Q, WU Q, WANG J M, et al. Pathomics signature based on machine learning can predict the response to neoadjuvant chemotherapy in breast cancer patients[J]. J Chongqing Med Univ, 2023, 48(12):1483-1488. | |
[20] | 包凌云, 朱罗茜, 孔凡雷, 等. 自动乳腺全容积成像和常规超声对乳腺微钙化诊断的对比研究[J]. 中华超声影像学杂志, 2012, 21(3):220-223. |
BAO L Y, ZHU L Q, KONG F L, et al. Comparative study of automated breast volume scanner with conventional ultrasound in diagnosing of breast microcalcifications[J]. Chin J Ultrasonography, 2012, 21(3):220-223. | |
[21] |
VAN ZELST J C M, MANN R M. Automated three-dimensional breast US for screening: technique, artifacts, and lesion characterization[J]. Radiographics, 2018, 38(3):663-683.
doi: 10.1148/rg.2018170162 pmid: 29624482 |
[22] | 吴佩佩, 张刚, 李倩, 等. 基于超声构建乳腺癌腋下淋巴结良恶性的预测模型[J]. 安徽医学, 2024, 45(11):1417-1423. |
WU P P, ZHANG G, LI Q, et al. Prediction model for benign and malignant axillary lymph nodes in breast cancer based on ultrasound[J]. Anhui Med, 2024, 45(11): 1417-1423. | |
[23] | 安林林, 马芳, 沈莉莉, 等. 乳腺癌超声征象与免疫组化指标表达关系的研究进展[J]. 中国临床研究, 2024, 37(10):1489-1493. |
AN L L, MA F, SHEN L L, et al. Research progress on the relationship between ultrasound signs and expression of immunohistechemical indicators in breast cancer[J]. Chin Clin Res, 2024, 37(10):1489-1493. | |
[24] | 杨骏宇, 沈吉, 沈思平, 等. 基于双模态超声的乳腺癌患者术前淋巴结转移负荷模型构建分析[J]. 中华全科医学, 2024, 22(4):646-650. |
[1] | 张慧慧, 方姝, 吴梦雄, 刘方韬, 贺娜英, 董海鹏, 严福华. 深度学习重建技术在改善磁共振冠状位T1WI显示垂体神经内分泌肿瘤图像质量中的研究[J]. 诊断学理论与实践, 2024, 23(06): 594-601. |
[2] | 阮淼, 笪倩, 许海敏, 董磊, 费晓春. HER2低表达乳腺癌临床病理学特征及预后研究[J]. 诊断学理论与实践, 2024, 23(05): 500-508. |
[3] | 查云飞, 武夏夏. MRI深度学习图像重建技术在肌骨系统疾病诊断的应用进展[J]. 诊断学理论与实践, 2024, 23(02): 114-118. |
[4] | 吕晓宇, 冯威铭, 周慧赟, 李纪强, 董海鹏, 黄娟. 基于磁共振深度学习重建算法缩短扫描时间的可行性分析:水模研究[J]. 诊断学理论与实践, 2024, 23(02): 131-138. |
[5] | 钱佳乐, 范婧, 朱宏, 王落桐, 孔德艳. 深度学习图像重建在虚拟平扫CT尿路成像中的应用价值[J]. 诊断学理论与实践, 2024, 23(02): 139-145. |
[6] | 刘娟, 殷丽娟, 范德生. AR、SKP2、SOX10、PD-L1及TIL表达在三阴性乳腺癌中的意义[J]. 诊断学理论与实践, 2024, 23(02): 162-172. |
[7] | 欧丹, 蔡钢, 陈佳艺. RAD51AP1基因表达在三阴性乳腺癌脑转移中的生物信息分析[J]. 诊断学理论与实践, 2024, 23(02): 146-154. |
[8] | 颜凌, 王凌云, 陈勇, 杜联军. 双能CT图像深度学习重建算法在胃癌术前T分期中的应用[J]. 诊断学理论与实践, 2023, 22(02): 154-159. |
[9] | 范婧, 杨文洁, 王梦真, 陆伟, 石骁萌, 朱宏. 深度学习重建算法在低管电压冠状动脉CT血管成像中的应用[J]. 诊断学理论与实践, 2022, 21(03): 374-379. |
[10] | 侯筱飒, 杨振江. 前哨淋巴结阳性乳腺癌患者发生非前哨淋巴结转移的危险因素分析[J]. 诊断学理论与实践, 2021, 20(03): 284-289. |
[11] | 陶志远, 史春颖, 张琦, 宋富贵, 吕哲昊. 数字乳腺体层合成在女性青年期乳腺癌筛查中的应用及研究进展[J]. 诊断学理论与实践, 2021, 20(03): 294-297. |
[12] | 卢叶君, 陈卉, 张剑, 徐斌, 王冲, 贺烨. 超微血管成像、超声弹性成像联合高频超声在微小乳腺癌中的诊断价值及相关高危超声特征的筛选[J]. 诊断学理论与实践, 2020, 19(04): 391-396. |
[13] | 罗婷, 周建桥. 超声新技术在预测乳腺癌分子标志物中的应用进展[J]. 诊断学理论与实践, 2020, 19(03): 325-328. |
[14] | 钟明, 赵峰, 吴衍, 裴文江, 高航, 郭善禹, 戴谦诚, 张伟. 血浆游离DNA中抑癌基因肿瘤高甲基化基因1甲基化检测方法的建立及其在乳腺疾病诊断中的意义[J]. 诊断学理论与实践, 2019, 18(2): 144-148. |
[15] | 王志威, 张晓晓, 王杰, 魏敏, 邵玉国, 籍敏, 杨莉, 何奇. 局部晚期乳腺癌患者腋窝淋巴结转移范围的影响因素分析[J]. 诊断学理论与实践, 2019, 18(2): 189-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||