内科理论与实践 ›› 2023, Vol. 18 ›› Issue (06): 451-456.doi: 10.16138/j.1673-6087.2023.06.014
收稿日期:
2022-12-08
出版日期:
2023-12-18
发布日期:
2024-03-18
通讯作者:
施小凤 E-mail:
HUANG Rong1, LIU Jing’an1, ZHU Yilin1, SHI Xiaofeng2()
Received:
2022-12-08
Online:
2023-12-18
Published:
2024-03-18
中图分类号:
黄容, 刘警安, 朱奕霖, 施小凤. microRNA在急性白血病中的作用及研究进展[J]. 内科理论与实践, 2023, 18(06): 451-456.
HUANG Rong, LIU Jing’an, ZHU Yilin, SHI Xiaofeng. The role and research progress of microRNA in acute leukemia[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(06): 451-456.
表1
miRNA在AL发生发展中的作用
miRNA类型 | 作用结果 | 作用方式 | 作用靶基因 | 疾病类型 | 调控的细胞类型 | 信号通路 | 参考文献 |
---|---|---|---|---|---|---|---|
9 | 抑癌 | 下调 | CXCR4 | AML | Kasumi-1 | [ | |
9 | 抑癌 | 下调 | AML | HL-60 | Hippo/YAP | [ | |
93 | 促癌 | 上调 | DAB2 | AML | THP-1 | PI3K/AKT | [ |
139-5p | 抑癌 | 下调 | TSPAN3 | AML | HL-60、OCI-AML3 | PI3K/AKT | [ |
139-5p | 抑癌 | 下调 | MNT | APL | NB4 | [ | |
20a-5p | 抑癌 | 下调 | PPP6C | AML | THP-1、U937 | [ | |
451 | 抑癌 | 下调 | HMGB1 | AML | HL-60、THP-1 | [ | |
29b-3p | 抑癌 | 下调 | HUR/ELAVL1 | AML | K562、U937 | NF-κB和JAK/STAT | [ |
504-3p | 抑癌 | 下调 | MTHFD2 | AML | HL-60、THP-1 | [ | |
4792 | 抑癌 | 下调 | KINDLIN3 | AML | HL-60、Kg1a | [ | |
204 | 抑癌 | 下调 | HGF | AML | Kasumi-1、HL-60 | HGF/c-Met | [ |
182-5p | 促癌 | 上调 | BCL2L12 | AML | AML5、Kasumi-1 | [ | |
362-5p | 促癌 | 上调 | GAS7 | AML | THP-1、HL-60 | [ | |
10b | 促癌 | 上调 | HOXD10 | AML | HL-60 | [ | |
582-3p | 抑癌 | 下调 | CCNB2 | AML | THP-1 | [ | |
335-3p | 抑癌 | 下调 | EIF3E | AML | THP-1、U937 | [ | |
1306-5p | 促癌 | 上调 | PHF6 | AML | HL-60、K562 | [ | |
148a-3p | 抑癌 | 下调 | CDK6 | AML | J111、KG-1a | [ | |
1271-5p | 抑癌 | 下调 | ZIC2 | AML | AML193、OCI-AML2 | [ | |
550-1 | 抑癌 | 下调 | WWTR1 | AML | MV4-11、Kasumi-1 | [ | |
155 | 促癌 | 上调 | ZNF238 | ALL | CEM-C1、Jurkat、MOLT-3、MOLT-4 | [ | |
342 | 抑癌 | 下调 | Naa10p | AML | Kg1a、HL60 | [ | |
223 | 抑癌 | 下调 | FOXO1 | ALL | CCRF-CEM、NALM-6 | [ |
表2
miRNA在AL治疗药物敏感性中的作用
miRNA类型 | 对药物敏感性的影响 | 影响的药物 | 疾病类型 | 调控的细胞类型 | 调控的靶基因 | 信号通路 | 参考文献 |
---|---|---|---|---|---|---|---|
9 | 过表达后增强 | 柔红霉素 | AML | THP-1、KG-1、 HL60、Kasumi-1 | EIF5A2 | EIF5A2/MCL-1 | [ |
33b | 过表达后增强 | 柔红霉素 | AML | THP-1、KG-1、 Kasumi-1、HL-60 | EIF5A2 | EIF5A2/MCL-1 | [ |
15a-5p | 过表达后抑制 | 柔红霉素 | AML | K562 | ATG9A、ATG14、 GABARAPL1、SMPD1 | [ | |
15a-5p、21-5p | 过表达后抑制 | 阿糖胞甘、柔红霉素 | AML | K562、OCI-AML3 | PDCD4、ARL2、BTG2 | [ | |
199a-5p | 过表达后增强 | 多柔比星 | AML | K562 | DRAM1 | DRAM1/自噬轴 | [ |
146a、155、181a | 沉默后增强 | 泼尼松龙 | ALL | SUP-B15 | [ | ||
130a | 沉默后增强 | 多柔比星 | AML | HL-60 | [ | ||
let-7f | 过表达后增强 | 多柔比星 | AML | K562、K562/A02 | ABCC5、ABCC10 | [ | |
145 | 过表达后增强 | 地塞米松 | ALL | CEM-C1 | [ |
[1] |
Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) Co-operative Group[J]. Br J Haematol, 1976, 33(4): 451-458.
doi: 10.1111/bjh.1976.33.issue-4 URL |
[2] |
Yamashita M, Dellorusso PV, Olson OC, et al. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis[J]. Nat Rev Cancer, 2020, 20(7): 365-382.
doi: 10.1038/s41568-020-0260-3 pmid: 32415283 |
[3] |
Zhang Y, Zhou SY, Yan HZ, et al. miR-203 inhibits proliferation and self-renewal of leukemia stem cells by targeting survivin and Bmi-1[J]. Sci Rep, 2016, 6: 19995.
doi: 10.1038/srep19995 pmid: 26847520 |
[4] | Krivdova G, Voisin V, Schoof EM, et al. Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML[J]. Cell Rep, 2022, 38(10): 110481. |
[5] |
Zhang L, Nguyen LXT, Chen YC, et al. Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance[J]. Nat Commun, 2021, 12(1): 6154.
doi: 10.1038/s41467-021-26420-7 pmid: 34686664 |
[6] | Zhu B, Zhong W, Cao X, et al. Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice[J]. Sci Transl Med, 2022, 14(629): eabh2548. |
[7] |
Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia[J]. Proc Natl Acad Sci U S A, 2007, 104(50): 19971-19976.
doi: 10.1073/pnas.0709313104 URL |
[8] |
Zhu B, Xi X, Liu Q, et al. MiR-9 functions as a tumor suppressor in acute myeloid leukemia by targeting CX chemokine receptor 4[J]. Am J Transl Res, 2019, 11(6):3384-3397.
pmid: 31312352 |
[9] |
Wang G, Yu X, Xia J, et al. MicroRNA-9 restrains the sharp increase and boost apoptosis of human acute myeloid leukemia cells by adjusting the Hippo/YAP signaling pathway[J]. Bioengineered, 2021, 12(1): 2906-2914.
doi: 10.1080/21655979.2021.1915727 pmid: 34167441 |
[10] |
Huang J, Xiao R, Wang X, et al. MicroRNA-93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2[J]. Int J Oncol, 2021, 59(4): 81.
doi: 10.3892/ijo URL |
[11] |
Zhang R, Tang P, Wang F, et al. Tumor suppressor miR-139-5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway[J]. J Cell Biochem, 2019, 120(3): 4423-4432.
doi: 10.1002/jcb.27728 pmid: 30367526 |
[12] | Fu Y, Li L, Hou J, et al. miR-139-5p regulates the proliferation of acute promyelocytic leukemia cells by targeting MNT[J]. J Oncol, 2021, 2021: 5522051. |
[13] | Bao F, Zhang L, Pei X, et al. MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia[J]. PLoS One, 2021, 16(9): e0256995. |
[14] |
Zhang Y, Chu X, Wei Q. MiR-451 promotes cell apoptosis and inhibits autophagy in pediatric acute myeloid leukemia by targeting HMGB1[J]. J Environ Pathol Toxicol Oncol, 2021, 40(2): 45-53.
doi: 10.1615/JEnvironPatholToxicolOncol.2021037139 pmid: 33822516 |
[15] |
Tang YJ, Wu W, Chen QQ, et al. miR-29b-3p suppresses the malignant biological behaviors of AML cells via inhibiting NF-κB and JAK/STAT signaling pathways by targeting HuR[J]. BMC Cancer, 2022, 22(1): 909.
doi: 10.1186/s12885-022-09996-1 |
[16] | Li SM, Zhao YQ, Hao YL, et al. Upregulation of miR-504-3p is associated with favorable prognosis of acute myeloid leukemia and may serve as a tumor suppressor by targeting MTHFD2[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3): 1203-1213. |
[17] |
Qin Y, Wang Y, Liu D. miR-4792 inhibits acute myeloid leukemia cell proliferation and invasion and promotes cell apoptosis by targeting Kindlin-3[J]. Oncol Res, 2020, 28(4): 357-369.
doi: 10.3727/096504020X15844389264424 pmid: 32183929 |
[18] |
Wang Z, Luo H, Fang Z, et al. MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis[J]. BMB Rep, 2018, 51(9): 444-449.
pmid: 29764561 |
[19] |
Zhang S, Zhang Q, Shi G, et al. MiR-182-5p regulates BCL2L12 and BCL2 expression in acute myeloid leukemia as a potential therapeutic target[J]. Biomed Pharmacother, 2018, 97: 1189-1194.
doi: S0753-3322(17)32015-2 pmid: 29136958 |
[20] |
Wu F, Yin C, Qi J, et al. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia[J]. Hum Cell, 2020, 33(2): 405-415.
doi: 10.1007/s13577-019-00319-4 pmid: 31925702 |
[21] | Wang CJ, Zou H, Feng GF. MiR-10b regulates the proli-feration and apoptosis of pediatric acute myeloid leukemia through targeting HOXD10[J]. Eur Rev Med Pharmacol Sci, 2018, 22(21): 7371-7378. |
[22] |
Li H, Tian X, Wang P, et al. MicroRNA-582-3p negatively regulates cell proliferation and cell cycle progression in acute myeloid leukemia by targeting cyclin B2[J]. Cell Mol Biol Lett, 2019, 24: 66.
doi: 10.1186/s11658-019-0184-7 pmid: 31844417 |
[23] |
Zhang L, Wang X, Wu J, et al. MiR-335-3p inhibits cell proliferation and induces cell cycle arrest and apoptosis in acute myeloid leukemia by targeting EIF3E[J]. Biosci Biotechnol Biochem, 2021, 85(9): 1953-1961.
doi: 10.1093/bbb/zbab116 URL |
[24] |
Gao X, Fan S, Zhang X. MiR-1306-5p promotes cell proliferation and inhibits cell apoptosis in acute myeloid leukemia by downregulating PHF6 expression[J]. Leuk Res, 2022, 120: 106906.
doi: 10.1016/j.leukres.2022.106906 URL |
[25] |
Zhou H, Jia X, Yang F, et al. miR-148a-3p suppresses the progression of acute myeloid leukemia via targeting cyclin-dependent kinase 6(CDK6)[J]. Bioengineered, 2021, 12(1): 4508-4519.
doi: 10.1080/21655979.2021.1956400 URL |
[26] | Chen X, Yang S, Zeng J, et al. miR-1271-5p inhibits cell proliferation and induces apoptosis in acute myeloid leukemia by targeting ZIC2[J]. Mol Med Rep, 2019, 19(1): 508-514. |
[27] |
Hu C, Yu M, Li C, et al. miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway[J]. Int J Biol Sci, 2020, 16(15): 2853-2867.
doi: 10.7150/ijbs.44365 pmid: 33061801 |
[28] |
Liang C, Li Y, Wang LN, et al. Up-regulated miR-155 is associated with poor prognosis in childhood acute lymphoblastic leukemia and promotes cell proliferation targeting ZNF238[J]. Hematology, 2021, 26(1): 16-25.
doi: 10.1080/16078454.2020.1860187 pmid: 33357126 |
[29] |
Wang H, He H, Yang C. miR-342 suppresses the pro-liferation and invasion of acute myeloid leukemia by targeting Naa10p[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 3671-3676.
doi: 10.1080/21691401.2019.1596930 URL |
[30] | Li C, Zhao T, Nie L, et al. MicroRNA-223 decreases cell proliferation, migration, invasion, and enhances cell apoptosis in childhood acute lymphoblastic leukemia via targeting Forkhead box O 1[J]. Biosci Rep, 2020, 40(10):BSR20200485. |
[31] |
Almeida RS, Costa E Silva M, Coutinho LL, et al. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia[J]. Hematol Oncol, 2019, 37(1):103-112.
doi: 10.1002/hon.2567 pmid: 30393877 |
[32] |
Mansouri S, Khansarinejad B, Mosayebi G, et al. Alteration in expression of miR-32 and FBXW7 tumor suppressor in plasma samples of patients with T-cell acute lymphoblastic leukemia[J]. Cancer Manag Res, 2020, 12:1253-1259.
doi: 10.2147/CMAR.S238470 pmid: 32110099 |
[33] |
Zamani A, Fattahi Dolatabadi N, Houshmand M, et al. miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia[J]. Leuk Res, 2021, 109: 106643.
doi: 10.1016/j.leukres.2021.106643 URL |
[34] | Shahid S, Shahid W, Shaheen J, et al. Circulating miR-146a expression as a non-invasive predictive biomarker for acute lymphoblastic leukemia[J]. Sci Rep, 2021, 11(1): 22783. |
[35] |
Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA[J]. Nucleic Acids Res, 2011, 39(16): 7223-7233.
doi: 10.1093/nar/gkr254 pmid: 21609964 |
[36] | Zhang B, Pei Z, Wang H, et al. Clinical value of serum miRNA in patients with acute promyelocytic leukemia[J]. J Oncol, 2022, 2022: 7315879. |
[37] |
Cao Y, Liu Y, Shang L, et al. Overexpression of miR-17 predicts adverse prognosis and disease recurrence for acute myeloid leukemia[J]. Int J Clin Oncol, 2022, 27(7): 1222-1232.
doi: 10.1007/s10147-022-02161-5 pmid: 35536524 |
[38] |
Yu AM, Tu MJ. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination[J]. Pharmacol Ther, 2022, 230: 107967.
doi: 10.1016/j.pharmthera.2021.107967 URL |
[39] |
Yu AM, Choi YH, Tu MJ. RNA drugs and RNA targets for small molecules: principles, progress, and challenges[J]. Pharmacol Rev, 2020, 72(4): 862-898.
doi: 10.1124/pr.120.019554 URL |
[40] |
Seto AG, Beatty X, Lynch JM, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proli-feration and survival in cutaneous T-cell lymphoma[J]. Br J Haematol, 2018, 183(3): 428-444.
doi: 10.1111/bjh.2018.183.issue-3 URL |
[41] |
Vu TT, Stölzel F, Wang KW, et al. miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia[J]. Leukemia, 2021, 35(7): 1933-1948.
doi: 10.1038/s41375-020-01095-z pmid: 33262524 |
[42] | Durmaz B, Bagca BG, Cogulu O, et al. Antileukemic effects of anti-miR-146a, anti-miR-155, anti-miR-181a, and prednisolone on childhood acute lymphoblastic leukemia[J]. Biomed Res Int, 2021, 2021: 3207328. |
[43] | Zhang H, Kang J, Liu L, et al. MicroRNA-143 sensitizes acute myeloid leukemia cells to cytarabine via targeting ATG7- and ATG2B-dependent autophagy[J]. Aging (Albany NY), 2020, 12(20): 20111-20126. |
[44] |
Wang Z, Fang Z, Lu R, et al. MicroRNA-204 potentiates the sensitivity of acute myeloid leukemia cells to arsenic trioxide[J]. Oncol Res, 2019, 27(9): 1035-1042.
doi: 10.3727/096504019X15528367532612 pmid: 30982490 |
[45] |
Liu Y, Lei P, Qiao H, et al. miR-9 enhances the chemosensitivity of AML cells to daunorubicin by targeting the EIF5A2/MCL-1 axis[J]. Int J Biol Sci, 2019, 15(3): 579-586.
doi: 10.7150/ijbs.29775 pmid: 30745844 |
[46] |
Liu Y, Lei P, Qiao H, et al. MicroRNA-33b regulates sensitivity to daunorubicin in acute myelocytic leukemia by regulating eukaryotic translation initiation factor 5A-2[J]. J Cell Biochem, 2020, 121(1): 385-393.
doi: 10.1002/jcb.29192 pmid: 31222822 |
[47] |
Bollaert E, Claus M, Vandewalle V, et al. MiR-15a-5p confers chemoresistance in acute myeloid leukemia by inhibiting autophagy induced by daunorubicin[J]. Int J Mol Sci, 2021, 22(10): 5153.
doi: 10.3390/ijms22105153 URL |
[48] |
Vandewalle V, Essaghir A, Bollaert E, et al. miR-15a-5p and miR-21-5p contribute to chemoresistance in cytogenetically normal acute myeloid leukaemia by targeting PDCD4, ARL2 and BTG2[J]. J Cell Mol Med, 2021, 25(1): 575-585.
doi: 10.1111/jcmm.16110 pmid: 33270982 |
[49] | Li Y, Zhang G, Wu B, et al. miR-199a-5p represses protective autophagy and overcomes chemoresistance by directly targeting DRAM1 in acute myeloid leukemia[J]. J Oncol, 2019, 2019: 5613417. |
[50] | Liu H, Liu M, Zhang J, et al. Downregulated miR-130a enhances the sensitivity of acute myeloid leukemia cells to Adriamycin[J]. Mol Med Rep, 2020, 22(4): 2810-2816. |
[51] |
Cao YX, Wen F, Luo ZY, et al. Downregulation of microRNA let-7f mediated the Adriamycin resistance in leukemia cell line[J]. J Cell Biochem, 2020, 121(10): 4022-4033.
doi: 10.1002/jcb.v121.10 URL |
[52] |
Long S, Ren D, Zhong F, et al. Reversal of glucocorticoid resistance in acute lymphoblastic leukemia cells by miR-145[J]. PeerJ, 2020, 8: e9337.
doi: 10.7717/peerj.9337 URL |
[53] |
Su YL, Wang X, Mann M, et al. Myeloid cell-targeted miR-146a mimic inhibits NF-κB-driven inflammation and leukemia progression in vivo[J]. Blood, 2020, 135(3): 167-180.
doi: 10.1182/blood.2019002045 URL |
[1] | 王创琦, 王茜, 王文威, 吴霏霏, 章艳琳. 精细化水化方案对预防异基因造血干细胞移植后并发出血性膀胱炎的研究[J]. 内科理论与实践, 2023, 18(06): 431-435. |
[2] | 卢昊, 奚会民, 李璐, 蔡循. 低剂量索拉非尼联合全反式维A酸诱导野生型Fms样酪氨酸激酶3的急性髓系白血病细胞分化[J]. 内科理论与实践, 2022, 17(06): 428-434. |
[3] | 任佳逸, 糜坚青. 新型抗体类药物在急性B淋巴细胞白血病中的治疗进展[J]. 内科理论与实践, 2022, 17(06): 463-467. |
[4] | 蒋天依, 刘福佳, 程雯艳, 赵慧瑾, 沈杨. 重组人血小板生成素治疗急性髓系白血病化疗后血小板减少[J]. 内科理论与实践, 2022, 17(04): 283-288. |
[5] | 徐娜娜, 吴涛, 寇明坤, 白海. ASXL1基因突变在急性髓系白血病中的研究进展[J]. 内科理论与实践, 2022, 17(04): 353-355. |
[6] | 罗东凤, 游建华, 李啸扬, 李军民, 张赟翔. 不耐受强化化疗的初治老年急性髓系白血病患者诱导治疗疗效及安全性[J]. 内科理论与实践, 2022, 17(03): 220-226. |
[7] | 冯秀娟, 吴涛, 白海. 急性髓系白血病DNA异常甲基化及治疗进展[J]. 内科理论与实践, 2021, 16(04): 282-286. |
[8] | 黄磊, 叶晨静, 吴超, 徐文彬, 俞晴, 李军民, 阎骅. 阿扎胞苷联合venetoclax治疗新诊断老年急性髓系白血病的临床观察[J]. 内科理论与实践, 2021, 16(03): 178-182. |
[9] | 董悦昕, 李啸扬, 张赟翔, 李军民,. 恶性肿瘤继发急性髓系白血病的临床预后分析[J]. 内科理论与实践, 2019, 14(06): 361-365. |
[10] | 李雅, 陈瑜, 李军民,. 老年急性髓系白血病的治疗进展[J]. 内科理论与实践, 2019, 14(06): 391-394. |
[11] | 郝杰, 楚小鸽, 李超, 巴音才次克, 董光苹, 刘占云, 刘振宇, 王静懿, 李良群, 孙海波, 陈瑜, 陈秋生, 孙慧平, 糜坚青, 王瑾,. 培门冬酶治疗成人Ph/BCR-ABL1阴性急性淋巴细胞白血病药物活性与疗效[J]. 内科理论与实践, 2019, 14(06): 355-360. |
[12] | 刘之茵, 陈钰, 陈玉宝, 严泽莹, 王莹, 李佳明, 孙海敏, 张苏江,. CLAG方案治疗复发、难治急性髓系白血病疗效、安全性分析及随访[J]. 内科理论与实践, 2019, 14(02): 116-120. |
[13] | 武慧敏, 石静云, 吴涛, 毛东锋, 白海, 王存邦,. WT1和HOX11基因阳性的急性淋巴细胞白血病1例[J]. 内科理论与实践, 2018, 13(03): 184-185. |
[14] | 石晓东, 戴钰俊, 杨莹, 王盼盼, 王月英,. 西罗莫司靶向治疗DNA甲基转移酶3A突变的急性髓系白血病的研究[J]. 内科理论与实践, 2018, 13(03): 175-180. |
[15] | 侯军, 张轶文, 施菊妹,. 半相合外周血造血干细胞移植联合后置环磷酰胺方案治疗骨髓增生异常综合征1例[J]. 内科理论与实践, 2018, 13(02): 110-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||