Journal of Diagnostics Concepts & Practice ›› 2024, Vol. 23 ›› Issue (02): 114-118.doi: 10.16150/j.1671-2870.2024.02.003
• Expert forum • Previous Articles Next Articles
Received:
2024-03-26
Online:
2024-04-25
Published:
2024-07-04
Contact:
ZHA Yunfei
E-mail:zhayunfei999@126.com
CLC Number:
ZHA Yunfei, WU Xiaxia. Application and research progress of MRI deep learning image reconstruction technology in clinical diagnosis of musculoskeletal system diseases[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 114-118.
[1] | CHAUDHARI A S, STEVENS K J, SVEINSSON B, et al. Combined 5-minute double-echo in steady-state with separated echoes and 2-minute proton-density-weighted 2D FSE sequence for comprehensive whole-joint knee MRI assessment[J]. J Magn Reson Imaging, 2019, 49(7):e183-e194. |
[2] | 严福华. 深度学习图像重建算法的临床应用和发展前景[J]. 中华放射学杂志, 2022, 56(11):1165-1167. |
YAN F H. The clinical application and development prospect of deep learning reconstruction algorithm[J]. Chin J Radiol, 2022, 56(11):1165-1167. | |
[3] | FRITZ J, GUGGENBERGER R, DEL GRANDE F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques[J]. AJR, 2021, 216(3):718-733. |
[4] | HAHN S, YI J, LEE HJ, et al. Comparison of deep lear-ning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction[J]. Skeletal Radiol, 2023, 52(8):1545-1555. |
[5] | YANG R, ZOU Y, LIU W V, et al. High-resolution single-shot fast spin-echo mr imaging with deep learning reconstruction algorithm can improve repeatability and reproducibility of follicle counting[J]. J Clin Med, 2023, 12(9):3234. |
[6] | HILBERT T, SUMPF T J, WEILAND E, et al. Accele-rated T2 mapping combining parallel MRI and model-based reconstruction: GRAPPATINI[J]. J Magn Reson Imaging, 2018, 48(2):359-368. |
[7] | CHAUDHARI A S, GRISSOM M J, FANG Z, et al. Diagnostic accuracy of quantitative multicontrast 5-minute knee MRI using prospective artificial intelligence image quality enhancement[J]. AJR, 2021, 216(6):1614-1625. |
[8] | WANG S S, XIAO T H, LIU Q G, et al. Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data[J]. Biomed Signal Process Control, 2021, 68(5):102579. |
[9] |
MANCO L, MAFFEI N, STROLIN S, et al. Basic of machine learning and deep learning in imaging for medical physicists[J]. Phys Med, 2021, 83:194-205.
doi: 10.1016/j.ejmp.2021.03.026 pmid: 33826964 |
[10] | PETERS R D, HARRIS H, LAWSON S. The clinical be-nefits of AIRTM Recon DL for MR image reconstruction[EB/OL]. [2022-11-07]. https://www.gehealthcare.com/ensg/-/jssmedia/c943df5927a049bb9ac95a9f0349ad8c.pdf. |
[11] | LEBEL R M. Performance characterization of a novel deep learning-based MR image reconstruction pipeline[EB/OL]. [2022-11-07]. https://arxiv.org/ftp/arxiv/papers/2008/2008.06559.pdf. |
[12] | HERRMANN J, KOERZDOERFER G, NICKEL D, et al. Feasibility and implementation of a deep learning mr reconstruction for TSE sequences in musculoskeletal imaging[J]. Diagnostics(Basel), 2021, 11(8):1484. |
[13] | RECHT M P, ZBONTAR J, SODICKSON D K, et al. Usi-ng deep learning to accelerate knee MRI at 3 T: results of an interchangeability study[J]. AJR, 2020, 215(6):1421-1429. |
[14] | JOHNSON P M, LIN D J, ZBONTAR J, et al. Deep lear-ning reconstruction enables prospectively accelerated clinical knee MRI[J]. Radiology, 2023, 307(2):e220425. |
[15] | 武夏夏, 陆雪芳, 刘昌盛, 等. 深度学习图像重建算法在膝关节加速MRI中的临床应用研究[J]. 磁共振成像, 2023, 14(5):53-59. |
WU X X, LU X F, LIU C S, et al. Clinical feasibility of 2D FSE sequences of the knee MRI protocol using deep-learning image reconstruction[J]. Chin J Magn Reson Ima-ging, 2023, 14(5):53-59. | |
[16] |
HERRMANN J, KELLER G, GASSENMAIER S, et al. Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol[J]. Eur Radiol, 2022, 32(9):6215-6229.
doi: 10.1007/s00330-022-08753-z pmid: 35389046 |
[17] | CHANG P D, CHOW D S. Revolutionizing Shoulder MRI: Accelerated Imaging with Deep Learning Reconstruction[J]. Radiology, 2024, 310(1):e233301. |
[18] | HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR, 2022, 218(3):506-516. |
[19] | KANIEWSKA M, DEININGER-CZERMAK E, GETZMANN J M, et al. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time[J]. Eur Radiol, 2023, 33(3):1513-1525. |
[20] | XIE Y, TAO H, LI X, et al. Prospective comparison of standard and deep learning-reconstructed turbo spin-echo MRI of the shoulder[J]. Radiology, 2024, 310(1):e231405. |
[21] | HERRMANN J, GASSENMAIER S, KELLER G, et al. Deep Learning MRI reconstruction for accelerating turbo spin echo hand and wrist imaging: A comparison of image quality, visualization of anatomy, and detection of common pathologies with standard imaging[J]. Acad Radiol, 2023, 30(11):2606-2615. |
[22] |
YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction[J]. Neuroradiology, 2022, 64(10):2077-2083.
doi: 10.1007/s00234-022-03024-6 pmid: 35918450 |
[23] | JARDON M, TAN E T, CHAZEN J L, et al. Deep-learni-ng-reconstructed high-resolution 3D cervical spine MRI for foraminal stenosis evaluation[J]. Skeletal Radiol, 2023, 52(4):725-732. |
[24] | SUN S, TAN E T, MINTZ D N, et al. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI[J]. Eur Radiol, 2022, 32(9):6167-6177. |
[25] | ALMANSOUR H, HERRMANN J, GASSENMAIER S, et al. Deep learning reconstruction for accelerated spine MRI: prospective analysis of interchangeability[J]. Radio-logy, 2023, 306(3):e212922. |
[1] | FENG Yuan, HE Zhao, SUN Qingfang, SUN Bomin, YAN Fuhua, YANG Guangzhong. Advances in interventional magnetic resonance imaging and its clinical applications [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 108-113. |
[2] | GAO Meng, CHAI Weimin, YAN Fuhua. Advance in study on diagnosis of pancreatic cystic tumors on CT/MRI imaging [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 184-191. |
[3] | LI Ming, CHEN Kemin, PAN Zilai, LUO Yu. Research progress on the value of CT and MRI in predicting hemorrhagic transformation after acute ischemic stroke [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(01): 83-89. |
[4] | DING Jingfeng, AO Weiqun, ZHU Zhen, SUN Jing, XU Lianggen, ZHENG Shibao, YU Jingjing, HU Jinwen. The value of radiomics based on T2WI and DWI of MRI in preoperative prediction of extramural vascular invasion in rectal cancer [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(01): 46-56. |
[5] | ZHOU Yilei, ZHANG Miao, GUO Rui, ZHOU Jinxin, LI Biao, LI Xiang. Value of 18F-PSMA PET/MRI for early diagnosis of recurrence and metastasis in prostate cancer patients after radical prostatectomy [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(06): 567-572. |
[6] | FENG Li, REN Gang, CAI Rong, WANG Xinyun, WANG Hui, ZHU Mingjie. Clinical features study of perivascular epithelioid cell tumor (PEComa) in genitourinary system [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 460-465. |
[7] | LI Xiaoshi, QIN Yue. Multiple radiology imaging techniques in the diagnosis of gout [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(03): 311-318. |
[8] | CHEN Qian, LIN Huimin, YAN Fuhua. Advances in the evaluation of hepatic function by magnetic resonance imaging [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(02): 190-196. |
[9] | HUANG Juan, ZHU Xiaolei, LI Xiao, CHEN Kemin, YAN Fuhua, XU Xueqin. Study on blood oxygen level-dependent magnetic resonance imaging for the assessment of early renal hypoxia in chronic kidney disease [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 385-389. |
[10] | ZHU Naiyi, JIANG Yixin, CHAI Li, CHAI Weimin. Diagnostic values of magnetic resonance imaging in mammography detected BI-RADS≥4 category calcifications with negative ultrasound results [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(05): 439-444. |
[11] | ZHANG Xuekun, LI Yan, YAN Fuhua, ZHAO Hongfei, SONG Qi. Application value of new accelerating technology based on constellation shuttling imaging in brain MRI [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(04): 378-383. |
[12] | SUN Tiantian, YE Baoying, YANG Yu, NIU Jianmei. Color Doppler ultrasound and magnetic resonance imaging in prenatal diagnosis of pernicious placenta previa and pernicious placenta previa with placenta accreta: clinic value and analysis of missed diagnosis [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(02): 173-177. |
[13] | CAO Juntao, HU Ming, QIAN Pingkang, TU Jianchun, ZHANG Huan, SHEN Junkang. Application value of 3.0T MRI 3D-MERGE sequence in evaluating the degree of supraspinatus tendon injury [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(01): 77-81. |
[14] | GU Xiaohong, SUN Aimin, WANG Qian, ZHU Ming, ZHONG Yumin. The three-dimensional balanced steady state free precession magnetic resonance imaging sequence in diagnosis of anomalous origin of the coronary artery from the pulmonary artery in children [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 145-150. |
[15] | WU Shuang, XIE Qian, GUAN Xueni, ZHANG Sufang, GAO Xinfang, LIANG Zonghui. Perfomence of MRI intravoxel incoherent motion diffusion weighted imaging parameters in diagnosing active Crohn's disease [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 157-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||